|
1.Holmes, R., Lobley, R.W. (1989) Intestinal brush border revisited. Gut 30, 1667-78. 2.Adibi, S.A. (1997) The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology 113, 332-40. 3.Mackenzie, B., Erickson, J.D. (2004) Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch 447, 784-95. 4.Joost, H.G., Thorens, B. (2001) The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol 18, 247-56. 5.Bell, G.I., Kayano, T., Buse, J.B., Burant, C.F., Takeda, J., Lin, D., Fukumoto, H., Seino, S. (1990) Molecular biology of mammalian glucose transporters. Diabetes Care 13, 198-208. 6.Sugita, M., Yue, Y., Foskett, J.K. (1998) CFTR Cl- channel and CFTR-associated ATP channel: distinct pores regulated by common gates. EMBO J 17, 898-908. 7.Pena-Munzenmayer, G., Catalan, M., Cornejo, I., Figueroa, C.D., Melvin, J.E., Niemeyer, M.I., Cid, L.P., Sepulveda, F.V. (2005) Basolateral localization of native ClC-2 chloride channels in absorptive intestinal epithelial cells and basolateral sorting encoded by a CBS-2 domain di-leucine motif. J Cell Sci 118, 4243-52. 8.Catalan, M., Niemeyer, M.I., Cid, L.P., Sepulveda, F.V. (2004) Basolateral ClC-2 chloride channels in surface colon epithelium: regulation by a direct effect of intracellular chloride. Gastroenterology 126, 1104-14. 9.Mohammad-Panah, R., Ackerley, C., Rommens, J., Choudhury, M., Wang, Y., Bear, C.E. (2002) The chloride channel ClC-4 co-localizes with cystic fibrosis transmembrane conductance regulator and may mediate chloride flux across the apical membrane of intestinal epithelia. J Biol Chem 277, 566-74. 10.Allen, A., Flemstrom, G. (2005) Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol 288, C1-19. 11.Hall, P.A., Coates, P.J., Ansari, B., Hopwood, D. (1994) Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci 107 ( Pt 12), 3569-77. 12.Watson, A.J., Chu, S., Sieck, L., Gerasimenko, O., Bullen, T., Campbell, F., McKenna, M., Rose, T., Montrose, M.H. (2005) Epithelial barrier function in vivo is sustained despite gaps in epithelial layers. Gastroenterology 129, 902-12. 13.Madara, J.L. (1990) Maintenance of the macromolecular barrier at cell extrusion sites in intestinal epithelium: physiological rearrangement of tight junctions. J Membr Biol 116, 177-84. 14.Panaro, M.A., Cianciulli, A., Mitolo, V., Mitolo, C.I., Acquafredda, A., Brandonisio, O., Cavallo, P. (2007) Caspase-dependent apoptosis of the HCT-8 epithelial cell line induced by the parasite Giardia intestinalis. FEMS Immunol Med Microbiol 51, 302-9. 15.Yu, L.C., Huang, C.Y., Kuo, W.T., Sayer, H., Turner, J.R., Buret, A.G. (2008) SGLT-1-mediated glucose uptake protects human intestinal epithelial cells against Giardia duodenalis-induced apoptosis. Int J Parasitol 38, 923-34. 16.Chin, A.C., Teoh, D.A., Scott, K.G., Meddings, J.B., Macnaughton, W.K., Buret, A.G. (2002) Strain-dependent induction of enterocyte apoptosis by Giardia lamblia disrupts epithelial barrier function in a caspase-3-dependent manner. Infect Immun 70, 3673-80. 17.Jones, N.L., Islur, A., Haq, R., Mascarenhas, M., Karmali, M.A., Perdue, M.H., Zanke, B.W., Sherman, P.M. (2000) Escherichia coli Shiga toxins induce apoptosis in epithelial cells that is regulated by the Bcl-2 family. Am J Physiol Gastrointest Liver Physiol 278, G811-9. 18.Yu, L.C., Flynn, A.N., Turner, J.R., Buret, A.G. (2005) SGLT-1-mediated glucose uptake protects intestinal epithelial cells against LPS-induced apoptosis and barrier defects: a novel cellular rescue mechanism? FASEB J 19, 1822-35. 19.Yu, L.C., Turner, J.R., Buret, A.G. (2006) LPS/CD14 activation triggers SGLT-1-mediated glucose uptake and cell rescue in intestinal epithelial cells via early apoptotic signals upstream of caspase-3. Exp Cell Res 312, 3276-86. 20.Renehan, A.G., O''Dwyer, S.T., Haboubi, N.J., Potten, C.S. (2002) Early cellular events in colorectal carcinogenesis. Colorectal Dis 4, 76-89. 21.Oumouna-Benachour, K., Oumouna, M., Zerfaoui, M., Hans, C., Fallon, K., Boulares, A.H. (2007) Intrinsic resistance to apoptosis of colon epithelial cells is a potential determining factor in the susceptibility of the A/J mouse strain to dimethylhydrazine-induced colon tumorigenesis. Mol Carcinog 46, 993-1002. 22.Malecka-Panas, E., Kordek, R., Biernat, W., Tureaud, J., Liberski, P.P., Majumdar, A.P. (1997) Differential activation of total and EGF receptor (EGF-R) tyrosine kinase (tyr-k) in the rectal mucosa in patients with adenomatous polyps, ulcerative colitis and colon cancer. Hepatogastroenterology 44, 435-40. 23.Sinicrope, F.A., Roddey, G., McDonnell, T.J., Shen, Y., Cleary, K.R., Stephens, L.C. (1996) Increased apoptosis accompanies neoplastic development in the human colorectum. Clin Cancer Res 2, 1999-2006. 24.Yang, W.C., Mathew, J., Velcich, A., Edelmann, W., Kucherlapati, R., Lipkin, M., Yang, K., Augenlicht, L.H. (2001) Targeted inactivation of the p21(WAF1/cip1) gene enhances Apc-initiated tumor formation and the tumor-promoting activity of a Western-style high-risk diet by altering cell maturation in the intestinal mucosal. Cancer Res 61, 565-9. 25.Velcich, A., Yang, W., Heyer, J., Fragale, A., Nicholas, C., Viani, S., Kucherlapati, R., Lipkin, M., Yang, K., Augenlicht, L. (2002) Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295, 1726-9. 26.Engelberg-Kulka, H., Amitai, S., Kolodkin-Gal, I., Hazan, R. (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2, e135. 27.Bursch, W., Ellinger, A., Gerner, C., Frohwein, U., Schulte-Hermann, R. (2000) Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann N Y Acad Sci 926, 1-12. 28.Kroemer, G., Martin, S.J. (2005) Caspase-independent cell death. Nat Med 11, 725-30. 29.Lawen, A. (2003) Apoptosis-an introduction. Bioessays 25, 888-96. 30.Ramachandran, A., Madesh, M., Balasubramanian, K.A. (2000) Apoptosis in the intestinal epithelium: its relevance in normal and pathophysiological conditions. J Gastroenterol Hepatol 15, 109-20. 31.Kelly, D., Conway, S., Aminov, R. (2005) Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol 26, 326-33. 32.Tannock, G.W., Munro, K., Harmsen, H.J., Welling, G.W., Smart, J., Gopal, P.K. (2000) Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66, 2578-88. 33.Shanahan, F. (2002) The host-microbe interface within the gut. Best Pract Res Clin Gastroenterol 16, 915-31. 34.Mazmanian, S.K., Liu, C.H., Tzianabos, A.O., Kasper, D.L. (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107-18. 35.Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., Medzhitov, R. (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229-41. 36.Willing, B.P., Van Kessel, A.G. (2007) Enterocyte proliferation and apoptosis in the caudal small intestine is influenced by the composition of colonizing commensal bacteria in the neonatal gnotobiotic pig. J Anim Sci 85, 3256-66. 37.Shirkey, T.W., Siggers, R.H., Goldade, B.G., Marshall, J.K., Drew, M.D., Laarveld, B., Van Kessel, A.G. (2006) Effects of commensal bacteria on intestinal morphology and expression of proinflammatory cytokines in the gnotobiotic pig. Exp Biol Med (Maywood) 231, 1333-45. 38.Fukata, M., Michelsen, K.S., Eri, R., Thomas, L.S., Hu, B., Lukasek, K., Nast, C.C., Lechago, J., Xu, R., Naiki, Y., Soliman, A., Arditi, M., Abreu, M.T. (2005) Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am J Physiol Gastrointest Liver Physiol 288, G1055-65. 39.Patsos, G., Corfield, A. (2009) Management of the human mucosal defensive barrier: evidence for glycan legislation. Biol Chem 390, 581-90. 40.Niv, Y. (2008) MUC1 and colorectal cancer pathophysiology considerations. World J Gastroenterol 14, 2139-41. 41.Kleessen, B., Kroesen, A.J., Buhr, H.J., Blaut, M. (2002) Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol 37, 1034-41. 42.Darfeuille-Michaud, A., Neut, C., Barnich, N., Lederman, E., Di Martino, P., Desreumaux, P., Gambiez, L., Joly, B., Cortot, A., Colombel, J.F. (1998) Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn''s disease. Gastroenterology 115, 1405-13. 43.Ford, A.C., Spiegel, B.M., Talley, N.J., Moayyedi, P. (2009) Small intestinal bacterial overgrowth in irritable bowel syndrome: systematic review and meta-analysis. Clin Gastroenterol Hepatol 7, 1279-86. 44.Menozzi, A., Pozzoli, C., Giovannini, E., Solenghi, E., Grandi, D., Bonardi, S., Bertini, S., Vasina, V., Coruzzi, G. (2006) Intestinal effects of nonselective and selective cyclooxygenase inhibitors in the rat. Eur J Pharmacol 552, 143-50. 45.Deitch, E.A., Bridges, W.M., Ma, J.W., Ma, L., Berg, R.D., Specian, R.D. (1990) Obstructed intestine as a reservoir for systemic infection. Am J Surg 159, 394-401. 46.Kabaroudis, A., Gerassimidis, T., Karamanos, D., Papaziogas, B., Antonopoulos, V., Sakantamis, A. (2003) Metabolic alterations of skeletal muscle tissue after prolonged acute ischemia and reperfusion. J Invest Surg 16, 219-28. 47.Neut, C., Bulois, P., Desreumaux, P., Membre, J.M., Lederman, E., Gambiez, L., Cortot, A., Quandalle, P., van Kruiningen, H., Colombel, J.F. (2002) Changes in the bacterial flora of the neoterminal ileum after ileocolonic resection for Crohn''s disease. Am J Gastroenterol 97, 939-46. 48.Schuppler, M., Lotzsch, K., Waidmann, M., Autenrieth, I.B. (2004) An abundance of Escherichia coli is harbored by the mucosa-associated bacterial flora of interleukin-2-deficient mice. Infect Immun 72, 1983-90. 49.Sagar, P.M., MacFie, J., Sedman, P., May, J., Mancey-Jones, B., Johnstone, D. (1995) Intestinal obstruction promotes gut translocation of bacteria. Dis Colon Rectum 38, 640-4. 50.Samel, S., Keese, M., Lanig, S., Kleczka, M., Gretz, N., Hafner, M., Sturm, J., Post, S. (2003) Supplementation and inhibition of nitric oxide synthesis influences bacterial transit time during bacterial translocation in rats. Shock 19, 378-82. 51.Wehner, S., Behrendt, F.F., Lyutenski, B.N., Lysson, M., Bauer, A.J., Hirner, A., Kalff, J.C. (2007) Inhibition of macrophage function prevents intestinal inflammation and postoperative ileus in rodents. Gut 56, 176-85. 52.Luckey, A., Livingston, E., Tache, Y. (2003) Mechanisms and treatment of postoperative ileus. Arch Surg 138, 206-14. 53.Ihedioha, U., Alani, A., Modak, P., Chong, P., O''Dwyer, P.J. (2006) Hernias are the most common cause of strangulation in patients presenting with small bowel obstruction. Hernia 10, 338-40. 54.Beall, D.P., Regan, F., Nguyen, B. (1999) Small bowel obstruction caused by intussusception after the ingestion of a plastic clip. Md Med J 48, 23-5. 55.Gurleyik, E., Gurleyik, G. (1998) Small bowel volvulus: a common cause of mechanical intestinal obstruction in our region. Eur J Surg 164, 51-5. 56.Ramadori, G., Lindhorst, A., Armbrust, T. (2007) Colorectal tumors with complete obstruction--endoscopic recovery of passage replacing emergency surgery? A report of two cases. BMC Gastroenterol 7, 14. 57.Rana, S.V., Bhardwaj, S.B. (2008) Small intestinal bacterial overgrowth. Scand J Gastroenterol 43, 1030-7. 58.Wu, C.C., Lu, Y.Z., Wu, L.L., Yu, L.C. (2010) Role of myosin light chain kinase in intestinal epithelial barrier defects in a rat model of bowel obstruction. BMC Gastroenterol 10, 39. 59.Akyildiz, M., Ersin, S., Oymaci, E., Dayangac, M., Kapkac, M., Alkanat, M. (2000) Effects of somatostatin analogues and vitamin C on bacterial translocation in an experimental intestinal obstruction model of rats. J Invest Surg 13, 169-73. 60.Gurleyik, G., Ozturk, E., Adaleti, R., Gunes, P., Guran, M., Peker, O., Saglam, A. (2004) Effects of prostaglandin E1 and E2 analogues on mucosal injury-induced, and on bacterial translocation promoted by, experimental intestinal obstruction. J Invest Surg 17, 127-34. 61.Alexander, C., Rietschel, E.T. (2001) Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7, 167-202. 62.Medzhitov, R., Preston-Hurlburt, P., Janeway, C.A., Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-7. 63.Chaudhary, P.M., Ferguson, C., Nguyen, V., Nguyen, O., Massa, H.F., Eby, M., Jasmin, A., Trask, B.J., Hood, L., Nelson, P.S. (1998) Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood 91, 4020-7. 64.Schumann, R.R., Leong, S.R., Flaggs, G.W., Gray, P.W., Wright, S.D., Mathison, J.C., Tobias, P.S., Ulevitch, R.J. (1990) Structure and function of lipopolysaccharide binding protein. Science 249, 1429-31. 65.Tobias, P.S., Soldau, K., Gegner, J.A., Mintz, D., Ulevitch, R.J. (1995) Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J Biol Chem 270, 10482-8. 66.Lee, J.Y., Sohn, K.H., Rhee, S.H., Hwang, D. (2001) Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem 276, 16683-9. 67.Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., Mathison, J.C. (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431-3. 68.Schumann, R.R. (1992) Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, the receptor for LPS/LBP complexes: a short review. Res Immunol 143, 11-5. 69.Ulevitch, R.J., Tobias, P.S. (1995) Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 13, 437-57. 70.Ziegler-Heitbrock, H.W., Pechumer, H., Petersmann, I., Durieux, J.J., Vita, N., Labeta, M.O., Strobel, M. (1994) CD14 is expressed and functional in human B cells. Eur J Immunol 24, 1937-40. 71.Ferrero, E., Bondanza, A., Leone, B.E., Manici, S., Poggi, A., Zocchi, M.R. (1998) CD14+ CD34+ peripheral blood mononuclear cells migrate across endothelium and give rise to immunostimulatory dendritic cells. J Immunol 160, 2675-83. 72.Bazil, V., Baudys, M., Hilgert, I., Stefanova, I., Low, M.G., Zbrozek, J., Horejsi, V. (1989) Structural relationship between the soluble and membrane-bound forms of human monocyte surface glycoprotein CD14. Mol Immunol 26, 657-62. 73.Frey, E.A., Miller, D.S., Jahr, T.G., Sundan, A., Bazil, V., Espevik, T., Finlay, B.B., Wright, S.D. (1992) Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med 176, 1665-71. 74.Pugin, J., Schurer-Maly, C.C., Leturcq, D., Moriarty, A., Ulevitch, R.J., Tobias, P.S. (1993) Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A 90, 2744-8. 75.Smith, P.D., Smythies, L.E., Mosteller-Barnum, M., Sibley, D.A., Russell, M.W., Merger, M., Sellers, M.T., Orenstein, J.M., Shimada, T., Graham, M.F., Kubagawa, H. (2001) Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J Immunol 167, 2651-6. 76.Monick, M.M., Carter, A.B., Gudmundsson, G., Mallampalli, R., Powers, L.S., Hunninghake, G.W. (1999) A phosphatidylcholine-specific phospholipase C regulates activation of p42/44 mitogen-activated protein kinases in lipopolysaccharide-stimulated human alveolar macrophages. J Immunol 162, 3005-12. 77.Monick, M.M., Mallampalli, R.K., Carter, A.B., Flaherty, D.M., McCoy, D., Robeff, P.K., Peterson, M.W., Hunninghake, G.W. (2001) Ceramide regulates lipopolysaccharide-induced phosphatidylinositol 3-kinase and Akt activity in human alveolar macrophages. J Immunol 167, 5977-85. 78.Cuschieri, J., Umanskiy, K., Solomkin, J. (2004) PKC-zeta is essential for endotoxin-induced macrophage activation. J Surg Res 121, 76-83. 79.Hashimoto, C., Hudson, K.L., Anderson, K.V. (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52, 269-79. 80.Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., Akira, S. (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162, 3749-52. 81.Zhang, H., Tay, P.N., Cao, W., Li, W., Lu, J. (2002) Integrin-nucleated Toll-like receptor (TLR) dimerization reveals subcellular targeting of TLRs and distinct mechanisms of TLR4 activation and signaling. FEBS Lett 532, 171-6. 82.Lee, H.K., Dunzendorfer, S., Tobias, P.S. (2004) Cytoplasmic domain-mediated dimerizations of toll-like receptor 4 observed by beta-lactamase enzyme fragment complementation. J Biol Chem 279, 10564-74. 83.Akira, S., Takeda, K. (2004) Toll-like receptor signalling. Nat Rev Immunol 4, 499-511. 84.Takeda, K., Akira, S. (2004) TLR signaling pathways. Semin Immunol 16, 3-9. 85.O''Neill, L.A., Dunne, A., Edjeback, M., Gray, P., Jefferies, C., Wietek, C. (2003) Mal and MyD88: adapter proteins involved in signal transduction by Toll-like receptors. J Endotoxin Res 9, 55-9. 86.Wesche, H., Henzel, W.J., Shillinglaw, W., Li, S., Cao, Z. (1997) MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837-47. 87.Li, S., Strelow, A., Fontana, E.J., Wesche, H. (2002) IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci U S A 99, 5567-72. 88.Burns, K., Janssens, S., Brissoni, B., Olivos, N., Beyaert, R., Tschopp, J. (2003) Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med 197, 263-8. 89.Cao, Z., Xiong, J., Takeuchi, M., Kurama, T., Goeddel, D.V. (1996) TRAF6 is a signal transducer for interleukin-1. Nature 383, 443-6. 90.Jiang, Z., Ninomiya-Tsuji, J., Qian, Y., Matsumoto, K., Li, X. (2002) Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol 22, 7158-67. 91.Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., Takeda, K., Akira, S. (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443-51. 92.Cario, E., Rosenberg, I.M., Brandwein, S.L., Beck, P.L., Reinecker, H.C., Podolsky, D.K. (2000) Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 164, 966-72. 93.Haller, D., Russo, M.P., Sartor, R.B., Jobin, C. (2002) IKK beta and phosphatidylinositol 3-kinase/Akt participate in non-pathogenic Gram-negative enteric bacteria-induced RelA phosphorylation and NF-kappa B activation in both primary and intestinal epithelial cell lines. J Biol Chem 277, 38168-78. 94.Shibuya, H., Yamaguchi, K., Shirakabe, K., Tonegawa, A., Gotoh, Y., Ueno, N., Irie, K., Nishida, E., Matsumoto, K. (1996) TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science 272, 1179-82. 95.Takaesu, G., Kishida, S., Hiyama, A., Yamaguchi, K., Shibuya, H., Irie, K., Ninomiya-Tsuji, J., Matsumoto, K. (2000) TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 5, 649-58. 96.Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C., Chen, Z.J. (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351-61. 97.Wang, C., Deng, L., Hong, M., Akkaraju, G.R., Inoue, J., Chen, Z.J. (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346-51. 98.Chen, Z., Hagler, J., Palombella, V.J., Melandri, F., Scherer, D., Ballard, D., Maniatis, T. (1995) Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev 9, 1586-97. 99.Li, X., Tupper, J.C., Bannerman, D.D., Winn, R.K., Rhodes, C.J., Harlan, J.M. (2003) Phosphoinositide 3 kinase mediates Toll-like receptor 4-induced activation of NF-kappa B in endothelial cells. Infect Immun 71, 4414-20. 100.Wong, F., Hull, C., Zhande, R., Law, J., Karsan, A. (2004) Lipopolysaccharide initiates a TRAF6-mediated endothelial survival signal. Blood 103, 4520-6. 101.Ojaniemi, M., Glumoff, V., Harju, K., Liljeroos, M., Vuori, K., Hallman, M. (2003) Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. Eur J Immunol 33, 597-605. 102.Kawai, T., Adachi, O., Ogawa, T., Takeda, K., Akira, S. (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115-22. 103.Oshiumi, H., Sasai, M., Shida, K., Fujita, T., Matsumoto, M., Seya, T. (2003) TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to toll-like receptor 4 TICAM-1 that induces interferon-beta. J Biol Chem 278, 49751-62. 104.Yamamoto, M., Sato, S., Hemmi, H., Uematsu, S., Hoshino, K., Kaisho, T., Takeuchi, O., Takeda, K., Akira, S. (2003) TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4, 1144-50. 105.Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., Akira, S. (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640-3. 106.Kaiser, W.J., Offermann, M.K. (2005) Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J Immunol 174, 4942-52. 107.Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Coyle, A.J., Liao, S.M., Maniatis, T. (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4, 491-6. 108.Sasai, M., Oshiumi, H., Matsumoto, M., Inoue, N., Fujita, F., Nakanishi, M., Seya, T. (2005) Cutting Edge: NF-kappaB-activating kinase-associated protein 1 participates in TLR3/Toll-IL-1 homology domain-containing adapter molecule-1-mediated IFN regulatory factor 3 activation. J Immunol 174, 27-30. 109.Park, J.M., Greten, F.R., Li, Z.W., Karin, M. (2002) Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297, 2048-51. 110.Hsu, L.C., Park, J.M., Zhang, K., Luo, J.L., Maeda, S., Kaufman, R.J., Eckmann, L., Guiney, D.G., Karin, M. (2004) The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature 428, 341-5. 111.Haase, R., Kirschning, C.J., Sing, A., Schrottner, P., Fukase, K., Kusumoto, S., Wagner, H., Heesemann, J., Ruckdeschel, K. (2003) A dominant role of Toll-like receptor 4 in the signaling of apoptosis in bacteria-faced macrophages. J Immunol 171, 4294-303. 112.Ruckdeschel, K., Pfaffinger, G., Haase, R., Sing, A., Weighardt, H., Hacker, G., Holzmann, B., Heesemann, J. (2004) Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages. J Immunol 173, 3320-8. 113.Martin-Villa, J.M., Ferre-Lopez, S., Lopez-Suarez, J.C., Corell, A., Perez-Blas, M., Arnaiz-Villena, A. (1997) Cell surface phenotype and ultramicroscopic analysis of purified human enterocytes: a possible antigen-presenting cell in the intestine. Tissue Antigens 50, 586-92. 114.Nishimura, M., Naito, S. (2005) Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28, 886-92. 115.Toiyama, Y., Araki, T., Yoshiyama, S., Hiro, J., Miki, C., Kusunoki, M. (2006) The expression patterns of Toll-like receptors in the ileal pouch mucosa of postoperative ulcerative colitis patients. Surg Today 36, 287-90. 116.Szebeni, B., Veres, G., Dezsofi, A., Rusai, K., Vannay, A., Mraz, M., Majorova, E., Arato, A. (2008) Increased expression of Toll-like receptor (TLR) 2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease. Clin Exp Immunol 151, 34-41. 117.Cario, E., Podolsky, D.K. (2000) Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 68, 7010-7. 118.Frolova, L., Drastich, P., Rossmann, P., Klimesova, K., Tlaskalova-Hogenova, H. (2008) Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis. J Histochem Cytochem 56, 267-74. 119.Doan, H.Q., Bowen, K.A., Jackson, L.A., Evers, B.M. (2009) Toll-like receptor 4 activation increases Akt phosphorylation in colon cancer cells. Anticancer Res 29, 2473-8. 120.Wang, E.L., Qian, Z.R., Nakasono, M., Tanahashi, T., Yoshimoto, K., Bando, Y., Kudo, E., Shimada, M., Sano, T. (2010) High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer 102, 908-15. 121.Bocker, U., Yezerskyy, O., Feick, P., Manigold, T., Panja, A., Kalina, U., Herweck, F., Rossol, S., Singer, M.V. (2003) Responsiveness of intestinal epithelial cell lines to lipopolysaccharide is correlated with Toll-like receptor 4 but not Toll-like receptor 2 or CD14 expression. Int J Colorectal Dis 18, 25-32. 122.Funda, D.P., Tuckova, L., Farre, M.A., Iwase, T., Moro, I., Tlaskalova-Hogenova, H. (2001) CD14 is expressed and released as soluble CD14 by human intestinal epithelial cells in vitro: lipopolysaccharide activation of epithelial cells revisited. Infect Immun 69, 3772-81. 123.Cario, E., Brown, D., McKee, M., Lynch-Devaney, K., Gerken, G., Podolsky, D.K. (2002) Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am J Pathol 160, 165-73. 124.Abreu, M.T., Vora, P., Faure, E., Thomas, L.S., Arnold, E.T., Arditi, M. (2001) Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J Immunol 167, 1609-16. 125.Suzuki, M., Hisamatsu, T., Podolsky, D.K. (2003) Gamma interferon augments the intracellular pathway for lipopolysaccharide (LPS) recognition in human intestinal epithelial cells through coordinated up-regulation of LPS uptake and expression of the intracellular Toll-like receptor 4-MD-2 complex. Infect Immun 71, 3503-11. 126.Ortega-Cava, C.F., Ishihara, S., Rumi, M.A., Aziz, M.M., Kazumori, H., Yuki, T., Mishima, Y., Moriyama, I., Kadota, C., Oshima, N., Amano, Y., Kadowaki, Y., Ishimura, N., Kinoshita, Y. (2006) Epithelial toll-like receptor 5 is constitutively localized in the mouse cecum and exhibits distinctive down-regulation during experimental colitis. Clin Vaccine Immunol 13, 132-8. 127.Ortega-Cava, C.F., Ishihara, S., Rumi, M.A., Kawashima, K., Ishimura, N., Kazumori, H., Udagawa, J., Kadowaki, Y., Kinoshita, Y. (2003) Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. J Immunol 170, 3977-85. 128.Meijssen, M.A., Brandwein, S.L., Reinecker, H.C., Bhan, A.K., Podolsky, D.K. (1998) Alteration of gene expression by intestinal epithelial cells precedes colitis in interleukin-2-deficient mice. Am J Physiol 274, G472-9. 129.Lotz, M., Gutle, D., Walther, S., Menard, S., Bogdan, C., Hornef, M.W. (2006) Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J Exp Med 203, 973-84. 130.Jilling, T., Simon, D., Lu, J., Meng, F.J., Li, D., Schy, R., Thomson, R.B., Soliman, A., Arditi, M., Caplan, M.S. (2006) The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol 177, 3273-82. 131.Hornef, M.W., Frisan, T., Vandewalle, A., Normark, S., Richter-Dahlfors, A. (2002) Toll-like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells. J Exp Med 195, 559-70. 132.Hornef, M.W., Normark, B.H., Vandewalle, A., Normark, S. (2003) Intracellular recognition of lipopolysaccharide by toll-like receptor 4 in intestinal epithelial cells. J Exp Med 198, 1225-35. 133.Fukata, M., Chen, A., Klepper, A., Krishnareddy, S., Vamadevan, A.S., Thomas, L.S., Xu, R., Inoue, H., Arditi, M., Dannenberg, A.J., Abreu, M.T. (2006) Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology 131, 862-77. 134.Fukata, M., Chen, A., Vamadevan, A.S., Cohen, J., Breglio, K., Krishnareddy, S., Hsu, D., Xu, R., Harpaz, N., Dannenberg, A.J., Subbaramaiah, K., Cooper, H.S., Itzkowitz, S.H., Abreu, M.T. (2007) Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133, 1869-81. 135.Herszenyi, L., Miheller, P., Tulassay, Z. (2007) Carcinogenesis in inflammatory bowel disease. Dig Dis 25, 267-9. 136.Tsai, C.H., Chen, H.L., Ni, Y.H., Hsu, H.Y., Jeng, Y.M., Chang, C.J., Chang, M.H. (2004) Characteristics and trends in incidence of inflammatory bowel disease in Taiwanese children. J Formos Med Assoc 103, 685-91. 137.Bernstein, C.N., Blanchard, J.F., Kliewer, E., Wajda, A. (2001) Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer 91, 854-62. 138.Yu, H.G., Yu, L.L., Yang, Y., Luo, H.S., Yu, J.P., Meier, J.J., Schrader, H., Bastian, A., Schmidt, W.E., Schmitz, F. (2003) Increased expression of RelA/nuclear factor-kappa B protein correlates with colorectal tumorigenesis. Oncology 65, 37-45. 139.Yu, L.L., Yu, H.G., Yu, J.P., Luo, H.S., Xu, X.M., Li, J.H. (2004) Nuclear factor-kappaB p65 (RelA) transcription factor is constitutively activated in human colorectal carcinoma tissue. World J Gastroenterol 10, 3255-60. 140.Sasaki, N., Morisaki, T., Hashizume, K., Yao, T., Tsuneyoshi, M., Noshiro, H., Nakamura, K., Yamanaka, T., Uchiyama, A., Tanaka, M., Katano, M. (2001) Nuclear factor-kappaB p65 (RelA) transcription factor is constitutively activated in human gastric carcinoma tissue. Clin Cancer Res 7, 4136-42. 141.Karin, M. (2008) The IkappaB kinase - a bridge between inflammation and cancer. Cell Res 18, 334-42. 142.Li, Q., Yu, Y.Y., Zhu, Z.G., Ji, Y.B., Zhang, Y., Liu, B.Y., Chen, X.H., Lin, Y.Z. (2005) Effect of NF-kappaB constitutive activation on proliferation and apoptosis of gastric cancer cell lines. Eur Surg Res 37, 105-10. 143.Chiao, P.J., Na, R., Niu, J., Sclabas, G.M., Dong, Q., Curley, S.A. (2002) Role of Rel/NF-kappaB transcription factors in apoptosis of human hepatocellular carcinoma cells. Cancer 95, 1696-705. 144.Dong, Q.G., Sclabas, G.M., Fujioka, S., Schmidt, C., Peng, B., Wu, T., Tsao, M.S., Evans, D.B., Abbruzzese, J.L., McDonnell, T.J., Chiao, P.J. (2002) The function of multiple IkappaB : NF-kappaB complexes in the resistance of cancer cells to Taxol-induced apoptosis. Oncogene 21, 6510-9. 145.Berruyer, C., Pouyet, L., Millet, V., Martin, F.M., LeGoffic, A., Canonici, A., Garcia, S., Bagnis, C., Naquet, P., Galland, F. (2006) Vanin-1 licenses inflammatory mediator production by gut epithelial cells and controls colitis by antagonizing peroxisome proliferator-activated receptor gamma activity. J Exp Med 203, 2817-27. 146.Pouyet, L., Roisin-Bouffay, C., Clement, A., Millet, V., Garcia, S., Chasson, L., Issaly, N., Rostan, A., Hofman, P., Naquet, P., Galland, F. (2010) Epithelial vanin-1 controls inflammation-driven carcinogenesis in the colitis-associated colon cancer model. Inflamm Bowel Dis 16, 96-104. 147.Chen, C., Edelstein, L.C., Gelinas, C. (2000) The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 20, 2687-95. 148.Wang, C.Y., Guttridge, D.C., Mayo, M.W., Baldwin, A.S., Jr. (1999) NF-kappaB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol 19, 5923-9. 149.Nenci, A., Becker, C., Wullaert, A., Gareus, R., van Loo, G., Danese, S., Huth, M., Nikolaev, A., Neufert, C., Madison, B., Gumucio, D., Neurath, M.F., Pasparakis, M. (2007) Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557-61. 150.Wei-Ting Kuo, L.C.-H.Y. (2008) High dose of bacterial LPS induce apoptosis-dependent tight junctional destruction in intestinal epithelial cells:Role of CD14 國立台灣大學生理學研究所碩士論文, 116. 151.Yagi, S., Takaki, A., Hori, T., Sugimachi, K. (2002) Enteric lipopolysaccharide raises plasma IL-6 levels in the hepatoportal vein during non-inflammatory stress in the rat. Fukuoka Igaku Zasshi 93, 38-51. 152.Drewe, J., Beglinger, C., Fricker, G. (2001) Effect of ischemia on intestinal permeability of lipopolysaccharides. Eur J Clin Invest 31, 138-44. 153.Yamada, T., Inui, A., Hayashi, N., Fujimura, M., Fujimiya, M. (2003) Serotonin stimulates endotoxin translocation via 5-HT3 receptors in the rat ileum. Am J Physiol Gastrointest Liver Physiol 284, G782-8. 154.Imaeda, H., Yamamoto, H., Takaki, A., Fujimiya, M. (2002) In vivo response of neutrophils and epithelial cells to lipopolysaccharide injected into the monkey ileum. Histochem Cell Biol 118, 381-8. 155.Unno, N., Wang, H., Menconi, M.J., Tytgat, S.H., Larkin, V., Smith, M., Morin, M.J., Chavez, A., Hodin, R.A., Fink, M.P. (1997) Inhibition of inducible nitric oxide synthase ameliorates endotoxin-induced gut mucosal barrier dysfunction in rats. Gastroenterology 113, 1246-57. 156.Moriez, R., Salvador-Cartier, C., Theodorou, V., Fioramonti, J., Eutamene, H., Bueno, L. (2005) Myosin light chain kinase is involved in lipopolysaccharide-induced disruption of colonic epithelial barrier and bacterial translocation in rats. Am J Pathol 167, 1071-9. 157.Raetz, C.R. (1990) Biochemistry of endotoxins. Annu Rev Biochem 59, 129-70. 158.Cohen, J. (2002) The immunopathogenesis of sepsis. Nature 420, 885-91. 159.Palsson-McDermott, E.M., O''Neill, L.A. (2004) Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113, 153-62. 160.Cuschieri, J., Billgren, J., Maier, R.V. (2006) Phosphatidylcholine-specific phospholipase C (PC-PLC) is required for LPS-mediated macrophage activation through CD14. J Leukoc Biol 80, 407-14. 161.Berg, R.D. (1995) Bacterial translocation from the gastrointestinal tract. Trends Microbiol 3, 149-54. 162.Gong, J., Xu, J., Zhu, W., Gao, X., Li, N., Li, J. (2010) Epithelial-specific blockade of MyD88-dependent pathway causes spontaneous small intestinal inflammation. Clin Immunol 136, 245-56. 163.Martin, C.A., Panja, A. (2002) Cytokine regulation of human intestinal primary epithelial cell susceptibility to Fas-mediated apoptosis. Am J Physiol Gastrointest Liver Physiol 282, G92-G104. 164.Deitch, E.A. (1989) Simple intestinal obstruction causes bacterial translocation in man. Arch Surg 124, 699-701. 165.Stechmiller, J.K., Treloar, D., Allen, N. (1997) Gut dysfunction in critically ill patients: a review of the literature. Am J Crit Care 6, 204-9. 166.Widmaier, E.P. (2004) Vander, Sherman, Luciano''s Human Physiology: The Mechanisms of Body Function, 9/e. 570. 167.Dauphinee, S.M., Karsan, A. (2006) Lipopolysaccharide signaling in endothelial cells. Lab Invest 86, 9-22. 168.Kawai, T., Akira, S. (2006) TLR signaling. Cell Death Differ 13, 816-25. 169.Martin-Padura, I., Lostaglio, S., Schneemann, M., Williams, L., Romano, M., Fruscella, P., Panzeri, C., Stoppacciaro, A., Ruco, L., Villa, A., Simmons, D., Dejana, E. (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142, 117-27.
|