(3.238.186.43) 您好!臺灣時間:2021/03/01 09:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊絢媛
研究生(外文):Hsun-Yuan Yang
論文名稱:腸腔面脂多醣刺激和共生細菌增生導致大腸上皮細胞凋亡之機轉:利用基因缺陷小鼠探討CD14和TLR4扮演之角色
論文名稱(外文):Luminal lipopolysaccharide challenge and commensal bacterial overgrowth induce colonic epithelial cell apoptosis: investigation of the role of CD14 and TLR4 using gene-deficient mouse models
指導教授:余佳慧余佳慧引用關係
指導教授(外文):Linda Chia- Hui Yu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生理學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:91
中文關鍵詞:脂多醣共生菌細胞凋亡CD14TLR4
外文關鍵詞:lipopolysaccharidecommensal bacteriaapoptosisCD14TLR4
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:單核球細胞在受到革蘭氏陰性菌脂多醣 (LPS) 刺激時,會啟動脂多醣受器複合物 (CD14/TLR4/MD2) 辨識而引發先天性免疫反應。當LPS和細胞表面的CD14結合後,會活化脂質第二傳訊分子神經醯胺 (ceramide) 和PKCζ,以趨化鄰近的TLR4至脂筏上形成複合物,進而引發下游的訊息途徑包括MyD88、IκB-α及MAPK家族 (例如JNK、ERK和p38)。目前已知人類腸道上皮細胞之脂多醣受器分子的表現模式與免疫細胞相異,這是由於腸腔中有大量共生菌之存在,因此推測腸道上皮細胞具有屏障及抑制機制,以維持腸道生理恆定避免引起不必要之發炎反應。在我們先前的研究發現,於腸腔中給予LPS刺激,會誘導只有CD14而無TLR4表現之人類腸道上皮細胞株Caco-2的凋亡反應,且此凋亡過程是經由ceramide/PKCζ之途徑。因此本實驗目的為利用基因缺陷小鼠動物模式來探討腸腔面LPS和共生細菌增生的刺激是否會引發大腸上皮細胞之凋亡。材料與方法:使用野生型小鼠 (WT,BALB/c及C57C57BL/6);TLR4基因自發性突變小鼠 (TLR4-m);CD14基因特定突變 (基因剔除) 小鼠 (CD14-m),取出其大腸組織放置在Ussing chambers上,於腸腔面給予PBS或LPS (萃取自非病原性大腸桿菌,5 and 50 μg/mL) 刺激2小時。利用缺口末端標記技術和細胞凋亡酵素免疫分析法測定腸道上皮細胞之凋亡程度,並使用免疫螢光組織染色和西方墨點法分析大腸黏膜組織 PKCζ、JNK、IκB-α及ERK磷酸化表現量。除此之外,將野生型和TLR4-m小鼠之大腸作假手術或腸阻塞處理24小時以誘發腸道細菌增生,再分析大腸黏膜細胞之凋亡程度,以及利用新鮮血液培養基和馬康氏培養基計數大腸、脾臟及肝臟之總細菌和G (-) 細菌之菌落形成單位 (CFU)。並且於Caco-2細胞株腸腔面加入活菌或死菌E.coli,測量其細胞凋亡與壞死量。結果:腸腔面LPS刺激會顯著引起TLR4-m小鼠之大腸上皮細胞凋亡,但對野生型BALB/c、C57BL/6及CD14-m小鼠之上皮細胞並無影響。預先投予中和性抗CD14抗體之抗體後和isotype control相比,可降低脂多醣刺激引起TLR4-m小鼠之大腸黏膜細胞凋亡程度。而在野生型BALB/c、C57BL/6和TLR4-m小鼠大腸腸腔面給予LPS刺激,會導致腸道上皮細胞PKCζ磷酸化表現量增加。此外,野生型C57BL/6和BALB/c之大腸黏膜組織受LPS刺激後,JNK及IκB-α磷酸化會上升,但這些現象並不見於CD14-m和TLR4-m小鼠組織上。再者,野生型BALB/c和TLR4-m小鼠在腸阻塞後,可觀察到腸道總細菌及G (-) 細菌量皆有顯著上升的情形,顯示大腸阻塞會導致腸道共生菌增生且此現象與鼠種並無直接相關性。腸阻塞處理後會造成野生型BALB/c小鼠腸道黏膜中的促發炎細胞激素 (TNF-α及IFN-γ) 表現增加,但TLR4-m小鼠無此表現。在野生型BALB/c小鼠作假手術或腸阻塞處理後,兩者黏膜細胞凋亡量並無差異;然而TLR4-m小鼠在腸阻塞後,大腸黏膜細胞凋亡量較假手術組增高三倍之多。且在野生型BALB/c及TLR4-m小鼠腸阻塞後可觀察到有PKCζ磷酸化表現於腸道上皮細胞。最後,野生型BALB/c和TLR4-m小鼠的肝臟及脾臟總細菌量,在腸阻塞後皆有上升的現象,顯示腸道屏障功能失常;而腸阻塞TLR4-m小鼠之肝脾總細菌量高出腸阻塞野生型BALB/c小鼠40倍。然而,兩鼠種的肝臟及脾臟之G (-) 菌量在假手術或腸阻塞組皆為0 CFU/g。最後,於Caco-2細胞株之腸腔面加入活菌或死菌E.coli會引起細胞凋亡且呈劑量依賴性。結論:在欠缺TLR4下游訊息傳遞的情況之下,腸腔面有LPS或共生菌增生的刺激會引發大腸上皮細胞之凋亡,且此過程可能是透過CD14/PKCζ媒介之途徑。


Background: Gram (-) bacterial lipopolysaccharide (LPS) induces innate immune responses via recognition by LPS receptor complex (CD14/TLR4/MD2) on cells of monocytic lineage. LPS binds to cell surface CD14 causing activation of a lipid secondary messenger ceramide and PKCζ to recruit adjacent TLR4 into lipid raft domains to form a receptor complex which initiates downstream signaling pathways including MyD88, IκB-α and MAPK families (e.g. JNK, ERK, and p38). In contrast to monocytes, distinct expression patterns of LPS receptors were identified in human enterocytes. The gut lumen normally harbors a large amount of commensal bacteria, for which barrier and suppressive mechanism at the epithelial level is important to downregulate unnecessary inflammatory reactions and to maintain gut homeostasis. Our previous studies indicated that luminal LPS triggered epithelial apoptosis via a ceramide/PKCζ-dependent pathway in human intestinal Caco-2 cells that express only CD14 but not TLR4 proteins. The aim of the current study is to investigate whether luminal LPS challenge and commensal bacteria overgrowth stimulate colonic enterocytic apoptosis in gene-deficient mouse models. Materials and methods: Wild type mice (WT; BALB/c and C57C57BL/6), mice with spontaneous mutation in TLR4 gene (TLR4-m), and mice with targeted mutation (knock out) of CD14 gene (CD14-m) were used. Mouse colonic tissues were mounted on Ussing chambers for luminal challenge with PBS or LPS (obtained from nonpathogenic E.coli; 5 and 50 μg/mL) for 2 hrs. The level of epithelial apoptosis was analyzed by TUNEL assay and cell death ELISA. Phosphorylation levels of PKCζ, IκB-α, JNK and ERK in the colonic mucosa were assessed by immunofluoresenct staining and western blotting. In the next experiment, colons of WT BALB/c and TLR4-m mice were either sham-operated or obstructed by thread ligation for 24 hrs to induce enteric bacterial overgrowth, and the apoptotic levels of colonic enterocytes were determined. Total and G (-) bacterial colony forming units (CFU) in the intestine, liver, and spleen was calculated on fresh blood and MacConkey agar plates. Caco-2 cells were apically exposed to live or dead nonpathogenic E.coli, and the levels of apoptosis and necrosis were examined. Results: Luminal LPS challenge significantly increased the levels of colonic epithelial apoptosis in TLR4-m mice, whereas no effect was seen in WT BALB/c, WT C57BL/6 and CD14-m mice. A slight decrease of LPS-induced mucosal apoptosis levels was seen in TLR4-m colonic tissues pretreated with neutralizing anti-CD14 compared with isotype antibody controls. LPS induced epithelial PKCζ phosphorylation in colonic tissues of WT BALB/c, C57BL/6 and TLR4-m mice. Enhanced mucosal phosphorylation of JNK and IκB-α was evident after luminal LPS challenge in WT C57BL/6 and WT BALB/c mice, but absent in CD14-m and TLR4-m mice. Moreover, colonic obstruction resulted in increase of total and G (-) bacterial counts in the intestines in both WT BALB/c and TLR4-m mice, suggesting obstruction-induced commensal bacterial overgrowth irrespective of mouse strain. Increased proinflammatory cytokines (TNF-α and IFN-γ) in intestinal mucosa was caused by colonic obstruction in BALB/c mice, but not in TLR4-m mice. No difference of mucosal cell apoptotic levels was seen between sham-operation and obstruction groups in WT BALB/c mice. However, a three-fold increase in mucosal cell apoptosis was evident in obstructed guts compared to sham operation in TLR4-m mice. Increased epithelial PKCζ phosphorylation was seen in the obstructed guts of WT BALB/c and TLR4-m mice. Enteric bacterial translocation was evidenced by increased total bacterial CFU in the liver and spleen after colonic obstruction in both WT BALB/c and TLR4-m mice, indicating gut barrier dysfunction. The total bacterial counts in the liver and spleen in obstructed TLR4-m mice were 40 times higher than those of obstructed WT BALB/c mice. However, G (-) bacterial counts in the liver and spleen after sham operation and colonic obstruction were 0 CFU/g in both mouse strains. Luminal challenge with live or dead E.coli induced Caco-2 cell apoptosis in a dose-dependent manner. Conclusions: Luminal LPS challenge and commensal bacterial overgrowth induced colonic epithelial cell apoptosis in mice deficient of TLR4 signaling. LPS-induced epithelial apoptosis may be mediated via CD14/PKCζ-dependent pathways.

口試委員審定書 I
謝辭 II
中文摘要 IV
Abstract VI
中英文縮寫名詞對照表 VIII
圖表目錄 XIV
一、前言 1
1. 腸道管壁之組織結構 1
2. 腸道之生理功能 1
2.1 消化 (digestion) 1
2.2 吸收 (absorption) 2
2.3 分泌 (secretion) 2
2.4 屏障 (barrier) 3
2.4.1 物理性屏障 (physical barrier) 3
2.4.2 化學性屏障 (chemical barrier) 3
2.4.3 免疫性屏障 (immune barrier) 4
3. 腸道上皮細胞之新生與凋亡 4
3.1 腺窩-絨毛軸 (crypt-villus axis) 4
3.2 上皮細胞過量凋亡會造成屏障缺損 4
3.3 上皮細胞低量凋亡與過量增生造成癌化現象 5
4. 細胞凋亡概論 5
5. 腸腔共生菌 (commensal bacteria) 與上皮細胞之互動 7
5.1 腸道共生菌概論 7
5.2 共生菌對腸道上皮細胞替換率 (turnover rate) 之影響 7
5.3 病理性共生菌增生與腸道發炎反應 8
5.3.1 細菌增生之臨床疾病 8
5.3.2 腸阻塞 9
6. 脂多醣受體複合物-TLR4、CD14、MD-2及其訊息途徑 10
6.1 脂多醣 (lipopolysaccharide, LPS) 10
6.2 脂多醣受體複合分子在單核球/巨噬細胞的表現 10
6.3 CD14媒介之下游訊息途徑 11
6.4 TLR4媒介之下游訊息途徑 12
6.5 CD14和TLR4在腸道上皮細胞之表現 14
6.5.1 正常人和病人腸道檢體之上皮細胞CD14和TLR4表現量 14
6.5.2 人類腸道上皮癌細胞株中的CD14和TLR4表現量和位置 14
6.5.3 小鼠腸道檢體上皮細胞中CD14和TLR4表現量和位置 15
6.5.4 小鼠腸癌上皮細胞株中CD14和TLR4表現量和位置 16
7. 脂多醣刺激對上皮細胞凋亡、發炎反應與癌化之關係 16
8. 研究目的 18
二、材料與方法 19
1. 實驗動物 19
2. 實驗設計 19
2.1 第一部分實驗:腸腔面大腸桿菌脂多醣刺激對上皮細胞凋亡的影響 20
2.1.1 腸組織架設於Ussing chambers 20
2.1.2 腸腔面大腸桿菌LPS的刺激 20
2.1.3 中和性抗CD14抗體 21
2.2第二部分實驗:大腸阻塞 (colonic obstruction, CO) 對於腸道功能之影響 21
2.3 第三部分實驗:活大腸桿菌 (E.coli) 及死大腸桿菌對於上皮細胞凋亡及壞死量和屏障功能之影響 22
2.3.1 細胞培養——人類大腸直腸癌之腸道上皮細胞株Caco-2 22
2.3.2 喜樹鹼 (camptothecin, CPT) 22
3. 組織切片及染色 23
3.1 檢體的製備 23
3.2 蘇木紫-伊紅染色 (Haematoxylin and Eosin Staining) 23
3.3 缺口末端標記技術 (Terminal deoxynucleotidyl transferase dUTP nick end labeling, TUNEL) 23
3.4 免疫螢光組織染色 (Immunofluorescence) 25
4. 細胞凋亡酵素免疫分析法 (Cell death ELISA kit) 26
4.1 腸道黏膜樣本之處理 26
4.2 測定細胞凋亡 (cell apoptosis) 26
5. 乳酸脫氫酵素 (Lactic dehydrogenase, LDH) 分析法 27
6. 腸段總細菌量 (total bacteria counts) 分析 27
7. 細菌移位測定 (bacterial translocation, BT) 28
8. 酵素連結免疫吸附分析法 28
9. 西方墨點法 (western blotting) 29
9.1 腸道黏膜之蛋白質萃取 29
9.2 蛋白質定量 29
9.3 蛋白質電泳 30
10. 統計分析 33
三、結果 34
第一部分實驗:腸腔面LPS刺激對小鼠腸道上皮細胞凋亡量之影響 34
1. 腸腔面LPS刺激會引發TLR4-m小鼠之腸道上皮細胞凋亡 34
2. 腸腔面LPS刺激引起小鼠腸道上皮細胞中訊息傳遞分子之改變 35
第二部分實驗:大腸阻塞 (colonic obstruction, CO) 和腸道細菌增生對於上皮細胞凋亡量和屏障功能之影響 36
1. 大腸阻塞對腸道細菌總數之影響 36
2. 大腸阻塞後黏膜細胞的凋亡程度 37
3. 大腸阻塞後黏膜組織TNF-a及IFN-r之產量 37
4. 大腸阻塞引起TLR4-m小鼠腸道上皮細胞中PKCζ之磷酸化 37
5. 大腸阻塞對屏障功能和細菌移位之影響 38
第三部分實驗:革蘭氏陰性大腸桿菌 (E.coli) 對上皮細胞凋亡及壞死量之影響 39
1. 腸腔面活菌E.coli的刺激會引起腸道上皮細胞株Caco-2之凋亡 39
2. 腸腔面死菌E.coli的刺激會引起腸道上皮細胞株Caco-2之凋亡 39
四、討論 40

1.Holmes, R., Lobley, R.W. (1989) Intestinal brush border revisited. Gut 30, 1667-78.
2.Adibi, S.A. (1997) The oligopeptide transporter (Pept-1) in human intestine: biology and function. Gastroenterology 113, 332-40.
3.Mackenzie, B., Erickson, J.D. (2004) Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. Pflugers Arch 447, 784-95.
4.Joost, H.G., Thorens, B. (2001) The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol 18, 247-56.
5.Bell, G.I., Kayano, T., Buse, J.B., Burant, C.F., Takeda, J., Lin, D., Fukumoto, H., Seino, S. (1990) Molecular biology of mammalian glucose transporters. Diabetes Care 13, 198-208.
6.Sugita, M., Yue, Y., Foskett, J.K. (1998) CFTR Cl- channel and CFTR-associated ATP channel: distinct pores regulated by common gates. EMBO J 17, 898-908.
7.Pena-Munzenmayer, G., Catalan, M., Cornejo, I., Figueroa, C.D., Melvin, J.E., Niemeyer, M.I., Cid, L.P., Sepulveda, F.V. (2005) Basolateral localization of native ClC-2 chloride channels in absorptive intestinal epithelial cells and basolateral sorting encoded by a CBS-2 domain di-leucine motif. J Cell Sci 118, 4243-52.
8.Catalan, M., Niemeyer, M.I., Cid, L.P., Sepulveda, F.V. (2004) Basolateral ClC-2 chloride channels in surface colon epithelium: regulation by a direct effect of intracellular chloride. Gastroenterology 126, 1104-14.
9.Mohammad-Panah, R., Ackerley, C., Rommens, J., Choudhury, M., Wang, Y., Bear, C.E. (2002) The chloride channel ClC-4 co-localizes with cystic fibrosis transmembrane conductance regulator and may mediate chloride flux across the apical membrane of intestinal epithelia. J Biol Chem 277, 566-74.
10.Allen, A., Flemstrom, G. (2005) Gastroduodenal mucus bicarbonate barrier: protection against acid and pepsin. Am J Physiol Cell Physiol 288, C1-19.
11.Hall, P.A., Coates, P.J., Ansari, B., Hopwood, D. (1994) Regulation of cell number in the mammalian gastrointestinal tract: the importance of apoptosis. J Cell Sci 107 ( Pt 12), 3569-77.
12.Watson, A.J., Chu, S., Sieck, L., Gerasimenko, O., Bullen, T., Campbell, F., McKenna, M., Rose, T., Montrose, M.H. (2005) Epithelial barrier function in vivo is sustained despite gaps in epithelial layers. Gastroenterology 129, 902-12.
13.Madara, J.L. (1990) Maintenance of the macromolecular barrier at cell extrusion sites in intestinal epithelium: physiological rearrangement of tight junctions. J Membr Biol 116, 177-84.
14.Panaro, M.A., Cianciulli, A., Mitolo, V., Mitolo, C.I., Acquafredda, A., Brandonisio, O., Cavallo, P. (2007) Caspase-dependent apoptosis of the HCT-8 epithelial cell line induced by the parasite Giardia intestinalis. FEMS Immunol Med Microbiol 51, 302-9.
15.Yu, L.C., Huang, C.Y., Kuo, W.T., Sayer, H., Turner, J.R., Buret, A.G. (2008) SGLT-1-mediated glucose uptake protects human intestinal epithelial cells against Giardia duodenalis-induced apoptosis. Int J Parasitol 38, 923-34.
16.Chin, A.C., Teoh, D.A., Scott, K.G., Meddings, J.B., Macnaughton, W.K., Buret, A.G. (2002) Strain-dependent induction of enterocyte apoptosis by Giardia lamblia disrupts epithelial barrier function in a caspase-3-dependent manner. Infect Immun 70, 3673-80.
17.Jones, N.L., Islur, A., Haq, R., Mascarenhas, M., Karmali, M.A., Perdue, M.H., Zanke, B.W., Sherman, P.M. (2000) Escherichia coli Shiga toxins induce apoptosis in epithelial cells that is regulated by the Bcl-2 family. Am J Physiol Gastrointest Liver Physiol 278, G811-9.
18.Yu, L.C., Flynn, A.N., Turner, J.R., Buret, A.G. (2005) SGLT-1-mediated glucose uptake protects intestinal epithelial cells against LPS-induced apoptosis and barrier defects: a novel cellular rescue mechanism? FASEB J 19, 1822-35.
19.Yu, L.C., Turner, J.R., Buret, A.G. (2006) LPS/CD14 activation triggers SGLT-1-mediated glucose uptake and cell rescue in intestinal epithelial cells via early apoptotic signals upstream of caspase-3. Exp Cell Res 312, 3276-86.
20.Renehan, A.G., O''Dwyer, S.T., Haboubi, N.J., Potten, C.S. (2002) Early cellular events in colorectal carcinogenesis. Colorectal Dis 4, 76-89.
21.Oumouna-Benachour, K., Oumouna, M., Zerfaoui, M., Hans, C., Fallon, K., Boulares, A.H. (2007) Intrinsic resistance to apoptosis of colon epithelial cells is a potential determining factor in the susceptibility of the A/J mouse strain to dimethylhydrazine-induced colon tumorigenesis. Mol Carcinog 46, 993-1002.
22.Malecka-Panas, E., Kordek, R., Biernat, W., Tureaud, J., Liberski, P.P., Majumdar, A.P. (1997) Differential activation of total and EGF receptor (EGF-R) tyrosine kinase (tyr-k) in the rectal mucosa in patients with adenomatous polyps, ulcerative colitis and colon cancer. Hepatogastroenterology 44, 435-40.
23.Sinicrope, F.A., Roddey, G., McDonnell, T.J., Shen, Y., Cleary, K.R., Stephens, L.C. (1996) Increased apoptosis accompanies neoplastic development in the human colorectum. Clin Cancer Res 2, 1999-2006.
24.Yang, W.C., Mathew, J., Velcich, A., Edelmann, W., Kucherlapati, R., Lipkin, M., Yang, K., Augenlicht, L.H. (2001) Targeted inactivation of the p21(WAF1/cip1) gene enhances Apc-initiated tumor formation and the tumor-promoting activity of a Western-style high-risk diet by altering cell maturation in the intestinal mucosal. Cancer Res 61, 565-9.
25.Velcich, A., Yang, W., Heyer, J., Fragale, A., Nicholas, C., Viani, S., Kucherlapati, R., Lipkin, M., Yang, K., Augenlicht, L. (2002) Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295, 1726-9.
26.Engelberg-Kulka, H., Amitai, S., Kolodkin-Gal, I., Hazan, R. (2006) Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet 2, e135.
27.Bursch, W., Ellinger, A., Gerner, C., Frohwein, U., Schulte-Hermann, R. (2000) Programmed cell death (PCD). Apoptosis, autophagic PCD, or others? Ann N Y Acad Sci 926, 1-12.
28.Kroemer, G., Martin, S.J. (2005) Caspase-independent cell death. Nat Med 11, 725-30.
29.Lawen, A. (2003) Apoptosis-an introduction. Bioessays 25, 888-96.
30.Ramachandran, A., Madesh, M., Balasubramanian, K.A. (2000) Apoptosis in the intestinal epithelium: its relevance in normal and pathophysiological conditions. J Gastroenterol Hepatol 15, 109-20.
31.Kelly, D., Conway, S., Aminov, R. (2005) Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol 26, 326-33.
32.Tannock, G.W., Munro, K., Harmsen, H.J., Welling, G.W., Smart, J., Gopal, P.K. (2000) Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66, 2578-88.
33.Shanahan, F. (2002) The host-microbe interface within the gut. Best Pract Res Clin Gastroenterol 16, 915-31.
34.Mazmanian, S.K., Liu, C.H., Tzianabos, A.O., Kasper, D.L. (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107-18.
35.Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S., Medzhitov, R. (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229-41.
36.Willing, B.P., Van Kessel, A.G. (2007) Enterocyte proliferation and apoptosis in the caudal small intestine is influenced by the composition of colonizing commensal bacteria in the neonatal gnotobiotic pig. J Anim Sci 85, 3256-66.
37.Shirkey, T.W., Siggers, R.H., Goldade, B.G., Marshall, J.K., Drew, M.D., Laarveld, B., Van Kessel, A.G. (2006) Effects of commensal bacteria on intestinal morphology and expression of proinflammatory cytokines in the gnotobiotic pig. Exp Biol Med (Maywood) 231, 1333-45.
38.Fukata, M., Michelsen, K.S., Eri, R., Thomas, L.S., Hu, B., Lukasek, K., Nast, C.C., Lechago, J., Xu, R., Naiki, Y., Soliman, A., Arditi, M., Abreu, M.T. (2005) Toll-like receptor-4 is required for intestinal response to epithelial injury and limiting bacterial translocation in a murine model of acute colitis. Am J Physiol Gastrointest Liver Physiol 288, G1055-65.
39.Patsos, G., Corfield, A. (2009) Management of the human mucosal defensive barrier: evidence for glycan legislation. Biol Chem 390, 581-90.
40.Niv, Y. (2008) MUC1 and colorectal cancer pathophysiology considerations. World J Gastroenterol 14, 2139-41.
41.Kleessen, B., Kroesen, A.J., Buhr, H.J., Blaut, M. (2002) Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol 37, 1034-41.
42.Darfeuille-Michaud, A., Neut, C., Barnich, N., Lederman, E., Di Martino, P., Desreumaux, P., Gambiez, L., Joly, B., Cortot, A., Colombel, J.F. (1998) Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn''s disease. Gastroenterology 115, 1405-13.
43.Ford, A.C., Spiegel, B.M., Talley, N.J., Moayyedi, P. (2009) Small intestinal bacterial overgrowth in irritable bowel syndrome: systematic review and meta-analysis. Clin Gastroenterol Hepatol 7, 1279-86.
44.Menozzi, A., Pozzoli, C., Giovannini, E., Solenghi, E., Grandi, D., Bonardi, S., Bertini, S., Vasina, V., Coruzzi, G. (2006) Intestinal effects of nonselective and selective cyclooxygenase inhibitors in the rat. Eur J Pharmacol 552, 143-50.
45.Deitch, E.A., Bridges, W.M., Ma, J.W., Ma, L., Berg, R.D., Specian, R.D. (1990) Obstructed intestine as a reservoir for systemic infection. Am J Surg 159, 394-401.
46.Kabaroudis, A., Gerassimidis, T., Karamanos, D., Papaziogas, B., Antonopoulos, V., Sakantamis, A. (2003) Metabolic alterations of skeletal muscle tissue after prolonged acute ischemia and reperfusion. J Invest Surg 16, 219-28.
47.Neut, C., Bulois, P., Desreumaux, P., Membre, J.M., Lederman, E., Gambiez, L., Cortot, A., Quandalle, P., van Kruiningen, H., Colombel, J.F. (2002) Changes in the bacterial flora of the neoterminal ileum after ileocolonic resection for Crohn''s disease. Am J Gastroenterol 97, 939-46.
48.Schuppler, M., Lotzsch, K., Waidmann, M., Autenrieth, I.B. (2004) An abundance of Escherichia coli is harbored by the mucosa-associated bacterial flora of interleukin-2-deficient mice. Infect Immun 72, 1983-90.
49.Sagar, P.M., MacFie, J., Sedman, P., May, J., Mancey-Jones, B., Johnstone, D. (1995) Intestinal obstruction promotes gut translocation of bacteria. Dis Colon Rectum 38, 640-4.
50.Samel, S., Keese, M., Lanig, S., Kleczka, M., Gretz, N., Hafner, M., Sturm, J., Post, S. (2003) Supplementation and inhibition of nitric oxide synthesis influences bacterial transit time during bacterial translocation in rats. Shock 19, 378-82.
51.Wehner, S., Behrendt, F.F., Lyutenski, B.N., Lysson, M., Bauer, A.J., Hirner, A., Kalff, J.C. (2007) Inhibition of macrophage function prevents intestinal inflammation and postoperative ileus in rodents. Gut 56, 176-85.
52.Luckey, A., Livingston, E., Tache, Y. (2003) Mechanisms and treatment of postoperative ileus. Arch Surg 138, 206-14.
53.Ihedioha, U., Alani, A., Modak, P., Chong, P., O''Dwyer, P.J. (2006) Hernias are the most common cause of strangulation in patients presenting with small bowel obstruction. Hernia 10, 338-40.
54.Beall, D.P., Regan, F., Nguyen, B. (1999) Small bowel obstruction caused by intussusception after the ingestion of a plastic clip. Md Med J 48, 23-5.
55.Gurleyik, E., Gurleyik, G. (1998) Small bowel volvulus: a common cause of mechanical intestinal obstruction in our region. Eur J Surg 164, 51-5.
56.Ramadori, G., Lindhorst, A., Armbrust, T. (2007) Colorectal tumors with complete obstruction--endoscopic recovery of passage replacing emergency surgery? A report of two cases. BMC Gastroenterol 7, 14.
57.Rana, S.V., Bhardwaj, S.B. (2008) Small intestinal bacterial overgrowth. Scand J Gastroenterol 43, 1030-7.
58.Wu, C.C., Lu, Y.Z., Wu, L.L., Yu, L.C. (2010) Role of myosin light chain kinase in intestinal epithelial barrier defects in a rat model of bowel obstruction. BMC Gastroenterol 10, 39.
59.Akyildiz, M., Ersin, S., Oymaci, E., Dayangac, M., Kapkac, M., Alkanat, M. (2000) Effects of somatostatin analogues and vitamin C on bacterial translocation in an experimental intestinal obstruction model of rats. J Invest Surg 13, 169-73.
60.Gurleyik, G., Ozturk, E., Adaleti, R., Gunes, P., Guran, M., Peker, O., Saglam, A. (2004) Effects of prostaglandin E1 and E2 analogues on mucosal injury-induced, and on bacterial translocation promoted by, experimental intestinal obstruction. J Invest Surg 17, 127-34.
61.Alexander, C., Rietschel, E.T. (2001) Bacterial lipopolysaccharides and innate immunity. J Endotoxin Res 7, 167-202.
62.Medzhitov, R., Preston-Hurlburt, P., Janeway, C.A., Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388, 394-7.
63.Chaudhary, P.M., Ferguson, C., Nguyen, V., Nguyen, O., Massa, H.F., Eby, M., Jasmin, A., Trask, B.J., Hood, L., Nelson, P.S. (1998) Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood 91, 4020-7.
64.Schumann, R.R., Leong, S.R., Flaggs, G.W., Gray, P.W., Wright, S.D., Mathison, J.C., Tobias, P.S., Ulevitch, R.J. (1990) Structure and function of lipopolysaccharide binding protein. Science 249, 1429-31.
65.Tobias, P.S., Soldau, K., Gegner, J.A., Mintz, D., Ulevitch, R.J. (1995) Lipopolysaccharide binding protein-mediated complexation of lipopolysaccharide with soluble CD14. J Biol Chem 270, 10482-8.
66.Lee, J.Y., Sohn, K.H., Rhee, S.H., Hwang, D. (2001) Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. J Biol Chem 276, 16683-9.
67.Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., Mathison, J.C. (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431-3.
68.Schumann, R.R. (1992) Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, the receptor for LPS/LBP complexes: a short review. Res Immunol 143, 11-5.
69.Ulevitch, R.J., Tobias, P.S. (1995) Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 13, 437-57.
70.Ziegler-Heitbrock, H.W., Pechumer, H., Petersmann, I., Durieux, J.J., Vita, N., Labeta, M.O., Strobel, M. (1994) CD14 is expressed and functional in human B cells. Eur J Immunol 24, 1937-40.
71.Ferrero, E., Bondanza, A., Leone, B.E., Manici, S., Poggi, A., Zocchi, M.R. (1998) CD14+ CD34+ peripheral blood mononuclear cells migrate across endothelium and give rise to immunostimulatory dendritic cells. J Immunol 160, 2675-83.
72.Bazil, V., Baudys, M., Hilgert, I., Stefanova, I., Low, M.G., Zbrozek, J., Horejsi, V. (1989) Structural relationship between the soluble and membrane-bound forms of human monocyte surface glycoprotein CD14. Mol Immunol 26, 657-62.
73.Frey, E.A., Miller, D.S., Jahr, T.G., Sundan, A., Bazil, V., Espevik, T., Finlay, B.B., Wright, S.D. (1992) Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med 176, 1665-71.
74.Pugin, J., Schurer-Maly, C.C., Leturcq, D., Moriarty, A., Ulevitch, R.J., Tobias, P.S. (1993) Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A 90, 2744-8.
75.Smith, P.D., Smythies, L.E., Mosteller-Barnum, M., Sibley, D.A., Russell, M.W., Merger, M., Sellers, M.T., Orenstein, J.M., Shimada, T., Graham, M.F., Kubagawa, H. (2001) Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. J Immunol 167, 2651-6.
76.Monick, M.M., Carter, A.B., Gudmundsson, G., Mallampalli, R., Powers, L.S., Hunninghake, G.W. (1999) A phosphatidylcholine-specific phospholipase C regulates activation of p42/44 mitogen-activated protein kinases in lipopolysaccharide-stimulated human alveolar macrophages. J Immunol 162, 3005-12.
77.Monick, M.M., Mallampalli, R.K., Carter, A.B., Flaherty, D.M., McCoy, D., Robeff, P.K., Peterson, M.W., Hunninghake, G.W. (2001) Ceramide regulates lipopolysaccharide-induced phosphatidylinositol 3-kinase and Akt activity in human alveolar macrophages. J Immunol 167, 5977-85.
78.Cuschieri, J., Umanskiy, K., Solomkin, J. (2004) PKC-zeta is essential for endotoxin-induced macrophage activation. J Surg Res 121, 76-83.
79.Hashimoto, C., Hudson, K.L., Anderson, K.V. (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52, 269-79.
80.Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., Akira, S. (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162, 3749-52.
81.Zhang, H., Tay, P.N., Cao, W., Li, W., Lu, J. (2002) Integrin-nucleated Toll-like receptor (TLR) dimerization reveals subcellular targeting of TLRs and distinct mechanisms of TLR4 activation and signaling. FEBS Lett 532, 171-6.
82.Lee, H.K., Dunzendorfer, S., Tobias, P.S. (2004) Cytoplasmic domain-mediated dimerizations of toll-like receptor 4 observed by beta-lactamase enzyme fragment complementation. J Biol Chem 279, 10564-74.
83.Akira, S., Takeda, K. (2004) Toll-like receptor signalling. Nat Rev Immunol 4, 499-511.
84.Takeda, K., Akira, S. (2004) TLR signaling pathways. Semin Immunol 16, 3-9.
85.O''Neill, L.A., Dunne, A., Edjeback, M., Gray, P., Jefferies, C., Wietek, C. (2003) Mal and MyD88: adapter proteins involved in signal transduction by Toll-like receptors. J Endotoxin Res 9, 55-9.
86.Wesche, H., Henzel, W.J., Shillinglaw, W., Li, S., Cao, Z. (1997) MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837-47.
87.Li, S., Strelow, A., Fontana, E.J., Wesche, H. (2002) IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci U S A 99, 5567-72.
88.Burns, K., Janssens, S., Brissoni, B., Olivos, N., Beyaert, R., Tschopp, J. (2003) Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med 197, 263-8.
89.Cao, Z., Xiong, J., Takeuchi, M., Kurama, T., Goeddel, D.V. (1996) TRAF6 is a signal transducer for interleukin-1. Nature 383, 443-6.
90.Jiang, Z., Ninomiya-Tsuji, J., Qian, Y., Matsumoto, K., Li, X. (2002) Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol 22, 7158-67.
91.Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., Takeda, K., Akira, S. (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443-51.
92.Cario, E., Rosenberg, I.M., Brandwein, S.L., Beck, P.L., Reinecker, H.C., Podolsky, D.K. (2000) Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 164, 966-72.
93.Haller, D., Russo, M.P., Sartor, R.B., Jobin, C. (2002) IKK beta and phosphatidylinositol 3-kinase/Akt participate in non-pathogenic Gram-negative enteric bacteria-induced RelA phosphorylation and NF-kappa B activation in both primary and intestinal epithelial cell lines. J Biol Chem 277, 38168-78.
94.Shibuya, H., Yamaguchi, K., Shirakabe, K., Tonegawa, A., Gotoh, Y., Ueno, N., Irie, K., Nishida, E., Matsumoto, K. (1996) TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Science 272, 1179-82.
95.Takaesu, G., Kishida, S., Hiyama, A., Yamaguchi, K., Shibuya, H., Irie, K., Ninomiya-Tsuji, J., Matsumoto, K. (2000) TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 5, 649-58.
96.Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C., Chen, Z.J. (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351-61.
97.Wang, C., Deng, L., Hong, M., Akkaraju, G.R., Inoue, J., Chen, Z.J. (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346-51.
98.Chen, Z., Hagler, J., Palombella, V.J., Melandri, F., Scherer, D., Ballard, D., Maniatis, T. (1995) Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev 9, 1586-97.
99.Li, X., Tupper, J.C., Bannerman, D.D., Winn, R.K., Rhodes, C.J., Harlan, J.M. (2003) Phosphoinositide 3 kinase mediates Toll-like receptor 4-induced activation of NF-kappa B in endothelial cells. Infect Immun 71, 4414-20.
100.Wong, F., Hull, C., Zhande, R., Law, J., Karsan, A. (2004) Lipopolysaccharide initiates a TRAF6-mediated endothelial survival signal. Blood 103, 4520-6.
101.Ojaniemi, M., Glumoff, V., Harju, K., Liljeroos, M., Vuori, K., Hallman, M. (2003) Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. Eur J Immunol 33, 597-605.
102.Kawai, T., Adachi, O., Ogawa, T., Takeda, K., Akira, S. (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115-22.
103.Oshiumi, H., Sasai, M., Shida, K., Fujita, T., Matsumoto, M., Seya, T. (2003) TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to toll-like receptor 4 TICAM-1 that induces interferon-beta. J Biol Chem 278, 49751-62.
104.Yamamoto, M., Sato, S., Hemmi, H., Uematsu, S., Hoshino, K., Kaisho, T., Takeuchi, O., Takeda, K., Akira, S. (2003) TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4, 1144-50.
105.Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K., Akira, S. (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640-3.
106.Kaiser, W.J., Offermann, M.K. (2005) Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J Immunol 174, 4942-52.
107.Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Coyle, A.J., Liao, S.M., Maniatis, T. (2003) IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4, 491-6.
108.Sasai, M., Oshiumi, H., Matsumoto, M., Inoue, N., Fujita, F., Nakanishi, M., Seya, T. (2005) Cutting Edge: NF-kappaB-activating kinase-associated protein 1 participates in TLR3/Toll-IL-1 homology domain-containing adapter molecule-1-mediated IFN regulatory factor 3 activation. J Immunol 174, 27-30.
109.Park, J.M., Greten, F.R., Li, Z.W., Karin, M. (2002) Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 297, 2048-51.
110.Hsu, L.C., Park, J.M., Zhang, K., Luo, J.L., Maeda, S., Kaufman, R.J., Eckmann, L., Guiney, D.G., Karin, M. (2004) The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature 428, 341-5.
111.Haase, R., Kirschning, C.J., Sing, A., Schrottner, P., Fukase, K., Kusumoto, S., Wagner, H., Heesemann, J., Ruckdeschel, K. (2003) A dominant role of Toll-like receptor 4 in the signaling of apoptosis in bacteria-faced macrophages. J Immunol 171, 4294-303.
112.Ruckdeschel, K., Pfaffinger, G., Haase, R., Sing, A., Weighardt, H., Hacker, G., Holzmann, B., Heesemann, J. (2004) Signaling of apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-beta, but not MyD88, in bacteria-infected murine macrophages. J Immunol 173, 3320-8.
113.Martin-Villa, J.M., Ferre-Lopez, S., Lopez-Suarez, J.C., Corell, A., Perez-Blas, M., Arnaiz-Villena, A. (1997) Cell surface phenotype and ultramicroscopic analysis of purified human enterocytes: a possible antigen-presenting cell in the intestine. Tissue Antigens 50, 586-92.
114.Nishimura, M., Naito, S. (2005) Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28, 886-92.
115.Toiyama, Y., Araki, T., Yoshiyama, S., Hiro, J., Miki, C., Kusunoki, M. (2006) The expression patterns of Toll-like receptors in the ileal pouch mucosa of postoperative ulcerative colitis patients. Surg Today 36, 287-90.
116.Szebeni, B., Veres, G., Dezsofi, A., Rusai, K., Vannay, A., Mraz, M., Majorova, E., Arato, A. (2008) Increased expression of Toll-like receptor (TLR) 2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease. Clin Exp Immunol 151, 34-41.
117.Cario, E., Podolsky, D.K. (2000) Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect Immun 68, 7010-7.
118.Frolova, L., Drastich, P., Rossmann, P., Klimesova, K., Tlaskalova-Hogenova, H. (2008) Expression of Toll-like receptor 2 (TLR2), TLR4, and CD14 in biopsy samples of patients with inflammatory bowel diseases: upregulated expression of TLR2 in terminal ileum of patients with ulcerative colitis. J Histochem Cytochem 56, 267-74.
119.Doan, H.Q., Bowen, K.A., Jackson, L.A., Evers, B.M. (2009) Toll-like receptor 4 activation increases Akt phosphorylation in colon cancer cells. Anticancer Res 29, 2473-8.
120.Wang, E.L., Qian, Z.R., Nakasono, M., Tanahashi, T., Yoshimoto, K., Bando, Y., Kudo, E., Shimada, M., Sano, T. (2010) High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br J Cancer 102, 908-15.
121.Bocker, U., Yezerskyy, O., Feick, P., Manigold, T., Panja, A., Kalina, U., Herweck, F., Rossol, S., Singer, M.V. (2003) Responsiveness of intestinal epithelial cell lines to lipopolysaccharide is correlated with Toll-like receptor 4 but not Toll-like receptor 2 or CD14 expression. Int J Colorectal Dis 18, 25-32.
122.Funda, D.P., Tuckova, L., Farre, M.A., Iwase, T., Moro, I., Tlaskalova-Hogenova, H. (2001) CD14 is expressed and released as soluble CD14 by human intestinal epithelial cells in vitro: lipopolysaccharide activation of epithelial cells revisited. Infect Immun 69, 3772-81.
123.Cario, E., Brown, D., McKee, M., Lynch-Devaney, K., Gerken, G., Podolsky, D.K. (2002) Commensal-associated molecular patterns induce selective toll-like receptor-trafficking from apical membrane to cytoplasmic compartments in polarized intestinal epithelium. Am J Pathol 160, 165-73.
124.Abreu, M.T., Vora, P., Faure, E., Thomas, L.S., Arnold, E.T., Arditi, M. (2001) Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J Immunol 167, 1609-16.
125.Suzuki, M., Hisamatsu, T., Podolsky, D.K. (2003) Gamma interferon augments the intracellular pathway for lipopolysaccharide (LPS) recognition in human intestinal epithelial cells through coordinated up-regulation of LPS uptake and expression of the intracellular Toll-like receptor 4-MD-2 complex. Infect Immun 71, 3503-11.
126.Ortega-Cava, C.F., Ishihara, S., Rumi, M.A., Aziz, M.M., Kazumori, H., Yuki, T., Mishima, Y., Moriyama, I., Kadota, C., Oshima, N., Amano, Y., Kadowaki, Y., Ishimura, N., Kinoshita, Y. (2006) Epithelial toll-like receptor 5 is constitutively localized in the mouse cecum and exhibits distinctive down-regulation during experimental colitis. Clin Vaccine Immunol 13, 132-8.
127.Ortega-Cava, C.F., Ishihara, S., Rumi, M.A., Kawashima, K., Ishimura, N., Kazumori, H., Udagawa, J., Kadowaki, Y., Kinoshita, Y. (2003) Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. J Immunol 170, 3977-85.
128.Meijssen, M.A., Brandwein, S.L., Reinecker, H.C., Bhan, A.K., Podolsky, D.K. (1998) Alteration of gene expression by intestinal epithelial cells precedes colitis in interleukin-2-deficient mice. Am J Physiol 274, G472-9.
129.Lotz, M., Gutle, D., Walther, S., Menard, S., Bogdan, C., Hornef, M.W. (2006) Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J Exp Med 203, 973-84.
130.Jilling, T., Simon, D., Lu, J., Meng, F.J., Li, D., Schy, R., Thomson, R.B., Soliman, A., Arditi, M., Caplan, M.S. (2006) The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol 177, 3273-82.
131.Hornef, M.W., Frisan, T., Vandewalle, A., Normark, S., Richter-Dahlfors, A. (2002) Toll-like receptor 4 resides in the Golgi apparatus and colocalizes with internalized lipopolysaccharide in intestinal epithelial cells. J Exp Med 195, 559-70.
132.Hornef, M.W., Normark, B.H., Vandewalle, A., Normark, S. (2003) Intracellular recognition of lipopolysaccharide by toll-like receptor 4 in intestinal epithelial cells. J Exp Med 198, 1225-35.
133.Fukata, M., Chen, A., Klepper, A., Krishnareddy, S., Vamadevan, A.S., Thomas, L.S., Xu, R., Inoue, H., Arditi, M., Dannenberg, A.J., Abreu, M.T. (2006) Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology 131, 862-77.
134.Fukata, M., Chen, A., Vamadevan, A.S., Cohen, J., Breglio, K., Krishnareddy, S., Hsu, D., Xu, R., Harpaz, N., Dannenberg, A.J., Subbaramaiah, K., Cooper, H.S., Itzkowitz, S.H., Abreu, M.T. (2007) Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133, 1869-81.
135.Herszenyi, L., Miheller, P., Tulassay, Z. (2007) Carcinogenesis in inflammatory bowel disease. Dig Dis 25, 267-9.
136.Tsai, C.H., Chen, H.L., Ni, Y.H., Hsu, H.Y., Jeng, Y.M., Chang, C.J., Chang, M.H. (2004) Characteristics and trends in incidence of inflammatory bowel disease in Taiwanese children. J Formos Med Assoc 103, 685-91.
137.Bernstein, C.N., Blanchard, J.F., Kliewer, E., Wajda, A. (2001) Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer 91, 854-62.
138.Yu, H.G., Yu, L.L., Yang, Y., Luo, H.S., Yu, J.P., Meier, J.J., Schrader, H., Bastian, A., Schmidt, W.E., Schmitz, F. (2003) Increased expression of RelA/nuclear factor-kappa B protein correlates with colorectal tumorigenesis. Oncology 65, 37-45.
139.Yu, L.L., Yu, H.G., Yu, J.P., Luo, H.S., Xu, X.M., Li, J.H. (2004) Nuclear factor-kappaB p65 (RelA) transcription factor is constitutively activated in human colorectal carcinoma tissue. World J Gastroenterol 10, 3255-60.
140.Sasaki, N., Morisaki, T., Hashizume, K., Yao, T., Tsuneyoshi, M., Noshiro, H., Nakamura, K., Yamanaka, T., Uchiyama, A., Tanaka, M., Katano, M. (2001) Nuclear factor-kappaB p65 (RelA) transcription factor is constitutively activated in human gastric carcinoma tissue. Clin Cancer Res 7, 4136-42.
141.Karin, M. (2008) The IkappaB kinase - a bridge between inflammation and cancer. Cell Res 18, 334-42.
142.Li, Q., Yu, Y.Y., Zhu, Z.G., Ji, Y.B., Zhang, Y., Liu, B.Y., Chen, X.H., Lin, Y.Z. (2005) Effect of NF-kappaB constitutive activation on proliferation and apoptosis of gastric cancer cell lines. Eur Surg Res 37, 105-10.
143.Chiao, P.J., Na, R., Niu, J., Sclabas, G.M., Dong, Q., Curley, S.A. (2002) Role of Rel/NF-kappaB transcription factors in apoptosis of human hepatocellular carcinoma cells. Cancer 95, 1696-705.
144.Dong, Q.G., Sclabas, G.M., Fujioka, S., Schmidt, C., Peng, B., Wu, T., Tsao, M.S., Evans, D.B., Abbruzzese, J.L., McDonnell, T.J., Chiao, P.J. (2002) The function of multiple IkappaB : NF-kappaB complexes in the resistance of cancer cells to Taxol-induced apoptosis. Oncogene 21, 6510-9.
145.Berruyer, C., Pouyet, L., Millet, V., Martin, F.M., LeGoffic, A., Canonici, A., Garcia, S., Bagnis, C., Naquet, P., Galland, F. (2006) Vanin-1 licenses inflammatory mediator production by gut epithelial cells and controls colitis by antagonizing peroxisome proliferator-activated receptor gamma activity. J Exp Med 203, 2817-27.
146.Pouyet, L., Roisin-Bouffay, C., Clement, A., Millet, V., Garcia, S., Chasson, L., Issaly, N., Rostan, A., Hofman, P., Naquet, P., Galland, F. (2010) Epithelial vanin-1 controls inflammation-driven carcinogenesis in the colitis-associated colon cancer model. Inflamm Bowel Dis 16, 96-104.
147.Chen, C., Edelstein, L.C., Gelinas, C. (2000) The Rel/NF-kappaB family directly activates expression of the apoptosis inhibitor Bcl-x(L). Mol Cell Biol 20, 2687-95.
148.Wang, C.Y., Guttridge, D.C., Mayo, M.W., Baldwin, A.S., Jr. (1999) NF-kappaB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol 19, 5923-9.
149.Nenci, A., Becker, C., Wullaert, A., Gareus, R., van Loo, G., Danese, S., Huth, M., Nikolaev, A., Neufert, C., Madison, B., Gumucio, D., Neurath, M.F., Pasparakis, M. (2007) Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557-61.
150.Wei-Ting Kuo, L.C.-H.Y. (2008) High dose of bacterial LPS induce apoptosis-dependent tight junctional destruction in intestinal epithelial cells:Role of CD14 國立台灣大學生理學研究所碩士論文, 116.
151.Yagi, S., Takaki, A., Hori, T., Sugimachi, K. (2002) Enteric lipopolysaccharide raises plasma IL-6 levels in the hepatoportal vein during non-inflammatory stress in the rat. Fukuoka Igaku Zasshi 93, 38-51.
152.Drewe, J., Beglinger, C., Fricker, G. (2001) Effect of ischemia on intestinal permeability of lipopolysaccharides. Eur J Clin Invest 31, 138-44.
153.Yamada, T., Inui, A., Hayashi, N., Fujimura, M., Fujimiya, M. (2003) Serotonin stimulates endotoxin translocation via 5-HT3 receptors in the rat ileum. Am J Physiol Gastrointest Liver Physiol 284, G782-8.
154.Imaeda, H., Yamamoto, H., Takaki, A., Fujimiya, M. (2002) In vivo response of neutrophils and epithelial cells to lipopolysaccharide injected into the monkey ileum. Histochem Cell Biol 118, 381-8.
155.Unno, N., Wang, H., Menconi, M.J., Tytgat, S.H., Larkin, V., Smith, M., Morin, M.J., Chavez, A., Hodin, R.A., Fink, M.P. (1997) Inhibition of inducible nitric oxide synthase ameliorates endotoxin-induced gut mucosal barrier dysfunction in rats. Gastroenterology 113, 1246-57.
156.Moriez, R., Salvador-Cartier, C., Theodorou, V., Fioramonti, J., Eutamene, H., Bueno, L. (2005) Myosin light chain kinase is involved in lipopolysaccharide-induced disruption of colonic epithelial barrier and bacterial translocation in rats. Am J Pathol 167, 1071-9.
157.Raetz, C.R. (1990) Biochemistry of endotoxins. Annu Rev Biochem 59, 129-70.
158.Cohen, J. (2002) The immunopathogenesis of sepsis. Nature 420, 885-91.
159.Palsson-McDermott, E.M., O''Neill, L.A. (2004) Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113, 153-62.
160.Cuschieri, J., Billgren, J., Maier, R.V. (2006) Phosphatidylcholine-specific phospholipase C (PC-PLC) is required for LPS-mediated macrophage activation through CD14. J Leukoc Biol 80, 407-14.
161.Berg, R.D. (1995) Bacterial translocation from the gastrointestinal tract. Trends Microbiol 3, 149-54.
162.Gong, J., Xu, J., Zhu, W., Gao, X., Li, N., Li, J. (2010) Epithelial-specific blockade of MyD88-dependent pathway causes spontaneous small intestinal inflammation. Clin Immunol 136, 245-56.
163.Martin, C.A., Panja, A. (2002) Cytokine regulation of human intestinal primary epithelial cell susceptibility to Fas-mediated apoptosis. Am J Physiol Gastrointest Liver Physiol 282, G92-G104.
164.Deitch, E.A. (1989) Simple intestinal obstruction causes bacterial translocation in man. Arch Surg 124, 699-701.
165.Stechmiller, J.K., Treloar, D., Allen, N. (1997) Gut dysfunction in critically ill patients: a review of the literature. Am J Crit Care 6, 204-9.
166.Widmaier, E.P. (2004) Vander, Sherman, Luciano''s Human Physiology: The Mechanisms of Body Function, 9/e. 570.
167.Dauphinee, S.M., Karsan, A. (2006) Lipopolysaccharide signaling in endothelial cells. Lab Invest 86, 9-22.
168.Kawai, T., Akira, S. (2006) TLR signaling. Cell Death Differ 13, 816-25.
169.Martin-Padura, I., Lostaglio, S., Schneemann, M., Williams, L., Romano, M., Fruscella, P., Panzeri, C., Stoppacciaro, A., Ruco, L., Villa, A., Simmons, D., Dejana, E. (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142, 117-27.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔