(3.232.129.123) 您好!臺灣時間:2021/03/06 02:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蘇倚恩
研究生(外文):Yi-En Su
論文名稱:氮化銦超快速載子釋能機制研究
論文名稱(外文):Ultrafast Carrier Relaxation Study in Indium Nitride
指導教授:孫啟光孫啟光引用關係
指導教授(外文):Chi-Kuang Sun
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:105
中文關鍵詞:
外文關鍵詞:InNcarrier dynamicselectron coolinghole heatingMg doped InN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氮化銦在近期因為其極小的直接能帶寬而廣泛受到重視(小於零點七個電子伏特),相對而言,氮化鎵則有著大約三點四個電子伏特的直接能帶寬,氮化銦鎵因此被預期根據不同比例的銦和鎵可使其放射光譜波長範圍從三百七十奈米一直到一千七百奈米,涵蓋了可見光波長的區域(大約四百奈米到七百奈米之間)、,因此氮化銦被認為有極高的潛力應用在發光二極體(LED)燈以及太陽能電池材料的上面。對於氮化銦的各樣載子(帶電粒子)加熱後的動力與釋能的機制了解顯得格外重要。
近代有關氮化銦載子動力學的研究當中,發現氮化銦還擁有許多其他的特性,很小的電子有效質量(零點零四二個電子質量)、相對小的電洞有效質量(零點四二個電子質量),非拋物線型的傳導帶,電子大量在表面累積的特性,很高的電子遷移率和很高的電子飽和漂移速度。其中有些特性使得氮化銦不只在光電領域,就算在各種需要快速反應的電子設備當中,也成為一種很有潛力的材料。而氮化銦極高的縱向光學聲子能量(73個毫電子伏特),也使其被預期會有個極快的,低於一百個飛秒雷射的電子釋能時間。然而過去實驗的結果卻不符合理論上的預期,截至2010之前的期刊中所發表的氮化銦的電子釋能時間都高於四百個飛秒,甚至在早期一點的文章有量測到接近於十個皮秒的釋能時間。
對於電子釋能時間的延長有兩種不同的機制解釋,一為熱聲子效應,一為其他電子對於個別電子與縱向光學聲子作用所產生的屏蔽效應。對於氮化銦電子釋能時間遠高於理論預期的原因,早期的文章期刊將其歸因於熱聲子效應,一直到2006年溫氏等人刊登的一篇文章根據一些實驗結果反對了這種說法,並且將釋能時間延長的原因歸於屏蔽效應,至此關於氮化銦釋能時間延長原因的爭論沒有中斷過。此篇論文中將証實氮化銦過長的電子釋能時間是來自於屏蔽效應。並且將發表在藉由降低電子濃度而去除屏蔽效應的影響後卻可觀察到的,符合理論預期的低於一百個飛秒雷射的電子釋能時間。
本論文也將發表關於氮化銦電洞在雷射光激發後在價帶帶底的各種動力學行為的研究,包含其電洞吸能與釋能時間的理論預測和實驗比較。這些研究結果對於氮化銦載子動力學的全盤了解將會有很大的幫助,希望未來氮化銦在各個前述領域的實際應用上將因為這篇論文所做的研究,而能更快預測並且解決因氮化銦載子特性所產生的問題,並且進一步有效的應用其特殊的載子特性,在光電與固態電子領域產生有效的突破與發展。


Indium nitride (InN) has been considered important recently because of its small direct band gap (~0.6 electron volt (eV)), comparing to Gallium Nitride (GaN) with a direct band gap of ~3.4eV. With different fraction of indium and gallium, GaxIn1-xN was expected to have emitting spectral wavelength ranged from 370nm to 1700nm, covering the region of visible light (about 400nm ~ 700nm) and telecommunication wavelength. InN was regarded as a great potential material applied in light-emitting diode (LED) and solar cells. Therefore, the carrier thermalization dynamics and energy relaxation mechanism in InN is highly important.
Recent investigations of InN carrier dynamics found that InN had many other special properties, very light electron effective mass (0.042m0), relatively light hole effective mass (0.42m0), nonparabolic conduction band, high electron accumulation on surface, high electron mobility, and high electron saturation drift velocity. These special properties make InN not only prospective in the optoelectrical field, but also a potential material for high reactive rate electrical devices. The ultrahigh longitudinal optical phonon (LO-phonon) energy of InN (~73meV) makes it expected to have an ultrafast electron energy relaxation time below 100 femtoseconds (fs). However, experimental results were not consistent with theoretical expectation. All the paper published before 2010 reported an electron energy relaxation time longer than 400fs. Papers published earlier even reported an energy relaxation time near 10 picoseconds (ps).
There are two explanations for the postponed electron energy relaxation time, one is the hot phonon effect, and one is the screening effect between each electron and LO-phonons induced by other electrons. Earlier papers attributed the reason to the hot phonon effect. Until 2006, Wen et al reported some experimental results against the story, and attributed the postponed relaxation time to the screening effect. Since then, the argument between the reasons of relatively slow energy relaxation time has never ended. This thesis will prove that the main reason of the postponed electron energy relaxation time shown in the published papers is the screening effect. This thesis also show that as the screening effect and the hot phonon effect being removed by lowering the electron density, a sub-100 fs electron energy relaxation time can be directly observed, consistent with the theoretical expectation.
This thesis also report an investigation on hole thermalization dynamics at the edge of the valence band, including holes heating time with both theoretical expectation and experimental result. I hope that this thesis would make significant help in understanding InN carrier dynamics. While InN is applied in the electrical or optoelectrical field in the future, the investigation and understanding of InN carrier mechanism in this thesis could help to predict or to solve some carrier property problems, and further more to make breakthrough in the fields of optoelectronics and solid state electronics.


致謝 I
摘要 III
Abstract V
Contents VII
Figure Contents X
Tables Contents XIX
Chapter 1 Introduction 1
1.1 Carrier thermalization time in InN 1
1.2 Pump-probe technique 5
1.3Investigation history and motivation 11
1.4 Thesis Structure 14
Reference 16
Chapter 2 InN carrier thermalization dynamics 19
2.1 InN properties 19
2.1.1 Nonparabolic conduction band 19
2.1.2 Mg doping and surface accumulation in InN 20
2.1.3 Selection Rules for Hole excitation 26
2.1.4 Other properties 27
2.2 Carrier Energy Relaxation Path 28
2.2.1 Carrier-Carrier scattering 28
2.2.2 Electron-LO phonon scattering 29
2.2.3 Hole-LO phonon scattering 30
2.2.4 Electron-Hole recombination 34
2.3 The hot phonon effect and the screening effect 35
2.3.1 The hot phonon effect 35
2.3.2 Screened Fröhlich interaction 38
2.4 Experimental Design 41
Reference 43
Chapter 3 InN electron thermalization dynamics 51
3.1 Simulations in carrier thermalization dynamics 51
3.1.1 Simulation assumptions and construction 51
3.1.2 Average energy and carrier density approximation 54
3.1.3 Simulation result 56
3.2 Trace fitting 77
3.3 Results and discussion 84
3.4 Conclusion 90
Reference 91
Chapter 4 InN heavy-hole thermalization dynamics 92
4.1 Trace fitting 92
4.2 Results and discussion 98
4.3 Conclusion 102
Reference 103
Chapter 5 Summary 104


[1.1]S. Das Sarma, “Quantum Many-Body Aspects of Hot-Carrier Relaxation In Semiconductor Microstructures” in “Hot Carriers In Semiconductor Nanostructures” edited by Jagdeep Shah. New Jersey (1992).
[1.2]S. Z. Sun, Y. C. Wen, S. H. Guol, H. M. Lee, S. Gwo, and C.-K. Sun, “Observation of femtosecond carrier thermalization time in indium nitride”, Appl. Phys. Lett. 103, 123513 (2008)
[1.3]Kasic A, Schubert M, Saito Y, Nanishi Y and Wagner G, “Effective electron mass and phonon modes in n-type hexagonal InN”, Phys. Rev. B 65, 115206 (2002).
[1.4]Inushima T, Higashiwaki M and Matsui T, “Optical properties of Si-doped InN grown on sapphire (0001)”, Phys. Rev. B68 235204 (2003)
[1.5]C. L. Tang and D. J. Erskine, Phys. Rev. Lett. “Femtosecond Relaxation of Photoexcited Nonequilibrium Carriers in AlxGa1-xAs”, 51, 840 (1983)
[1.6]J. L. Oudar, A. Migus, D. Hulin, G. Grillon, J. Etchepare, and A. Antonetti, “Femtosecond Orientational Relaxation of Photoexcited Carriers in GaAs”, Phys. Rev. Lett. 53, 384 (1984).
[1.7]W. Z. Lin, R. W. Schoenlein, J. G. Fujimoto, and E. P. Ippen, “Femtosecond Absorption Saturation Studies of Hot Carriers in GaAs and AlGaAs”, IEEE J. Quantum Electron. 24, 267 (1988).
[1.8]S. Hunsche, H. Heesel, A. Ewertz, H. Kurtz, and J. H. Collet, “Spectral-hole burning and carrier thermalization in GaAs at room temperature”, Phys. Rev. B 48, 17 818 (1993).
[1.9]R. Tommasi, P. Langot, and F. Vallée, “Femtosecond hole thermalization in bulk GaAs”, Appl. Phys. Lett. 66, 1361 (1995). Copyright American Institute of Physics. Reproduced with permission.
[1.10]D. Zanato, N. Balkan, B. K. Ridley, G. Hill, and W. J. Schaff, “Hot electron cooling rates via the emission of LO-phonons in InN”, Semicond. Sci. Technol. 19, 1024 (2004).
[1.11]F. Chen, A. N. Cartwright, H. Lu, and W. J. Schaff, “Time-resolved spectroscopy of recombination and relaxation dynamics in InN”, Appl. Phys. Lett. 83, 4984 (2003).
[1.12]R. Ascázubi, I. Wilke, S. Cho, H. Lu, and W. J. Schaff, “Ultrafast recombination in Si-doped InN” Appl. Phys. Lett. 88, 112111 (2006).
[1.13]V. Pacebutas, G. Aleksejenko, A. Krotkus, J. W. Ager III, W. Walukiewicz,H. Lu, and W. J. Schaff, “Optical bleaching effect in InN epitaxial layers”, Appl. Phys. Lett. 88, 191109 (2006).
[1.14]J. W. Pomeroy, M. Kuball, H. Lu, W. J. Schaff, X. Wang, and A. Yoshikawa, “Phonon lifetimes and phonon decay in InN”, Appl. Phys. Lett. 86, 223501 (2005). Copyright American Institute of Physics. Reproduced with permission.
[1.15]Y. C. Wen, C. Y. Chen, C. H. Shen, S. Gwo, and C. K. Sun, ” Ultrafast carrier thermalization in InN”, Appl. Phys. Lett. 89, 232114 (2006).
[1.16]D.-J. Jang, G.-T. Lin, C.-L. Wu, C.-L. Hsiao, L.-W. Tu, and M.-E. Lee, “Energy relaxation of InN thin films”, Appl. Phys. Lett. 91, 092108 (2007).
[1.17]K T Tsen and D K Ferry, “Studies of electron-phonon and phonon-phonon interactions in InN using ultrafast Raman spectroscopy‏”, J. Phys.: Condens. Matter 21 174202 (2009)
[1.18]T. R. Tsai, C.-F. Chang, and S. Gwo, “Ultrafast hot electron relaxation time anomaly in InN epitaxial films”, Appl. Phys. Lett. 90, 252111 (2007)
[1.19]T. R. Tsai, C. Y. Chang, C. W. Kuo J. S. Hwang, T. Y. Lin, and S. Gwo, “Spectral dependence of time-resolved photoreflectance of InN epitaxial films”, Appl. Phys. Lett. 95, 142108 (2009)
[2.1]V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V.
Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold,
O. Semchinova, and J. Graul, “Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap”, Phys. Status Solidi B 229, R1 (2002).
[2.2]F. Bechstedt, J. Furthm_ller, M. Ferhat, L. K. Teles, L. M. R. Scolfaro, J. R. Leite, V. Yu. Davydov, O. Ambacher, and R. Goldhahn, “Energy gap and optical properties of InxGa1-xN”, Phys. Sstatus Solidi A 195, 628 (2003)
[2.3]S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, “Heteroepitaxial growth of wurtzite InN films on Si.111. exhibiting strong near-infrared photoluminescence at room temperature”, Appl. Phys. Lett. 84, 3765 (2004).
[2.4]H. Ahn, C.-H. Shen, C. -L. Wu, and S. Gwo, “Spectroscopic ellipsometry study of wurtzite InN epitaxial films on Si.111. with varied carrier concentrations”, Appl. Phys. Lett. 86, 201905 (2005)
[2.5]A. A. Klochikhin, V. Yu. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, Hai Lu and William J. Schaff, “Acceptor states in the photoluminescence spectra of n-InN”, Phys. Rev. B 71, 195207 (2005).
[2.6]J. S. Thakur, Y. V. Danylyuk, D. Haddad, V. M. Naik, R. Naik, and G. W. Auner, “Influence of defects on the absorption edge of InN thin films: The band gap value”, Phys. Rev. B 76, 035309 (2007).
[2.7]P Schley, R Goldhahn, C Napierala, G Gobsch, J Sch¨ormann, D J As, K Lischka, M Feneberg and K Thonke, “Dielectric function of cubic InN from the mid-infrared to the visible spectral range”, Semicond. Sci. Technol. 23 055001 (2008)
[2.8]A. Kasic, M. Schubert, Y. Saito, Y. Nanishi, G. Wagner, “Effective electron mass and phonon modes in n-type hexagonal InN”, Phys. Rev. B 65, 115206 (2002).
[2.9]B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, and B. Monemar, H. Lu and W. J. Schaff, H. Amano and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels” Phys. Rev. B 69, 115216 (2004).
[2.10]T. Hofmann, T. Chavdarov, V. Darakchieva, H. Lu,W. J. Schaff, and M. Schubert, “Anisotropy of the Γ-point effective mass and mobility in hexagonal InN”, Phys. Status Solidi C 3,1854 (2006)
[2.11]Y.-M. Chang, H. W. Chu, C.-H. Shen, H.-Y. Chen, and S. Gwo, “Determination of the electron effective mass of wurtzite InN by coherent upper-branch A1„LO… phonon-plasmon coupling mode”, Appl. Phys. Lett. 90, 072111 (2007)
[2.12]Evan O. Kane, “Band structure of indium antimonide”, J. Phys. Chem. Solids 1, 249 (1957).
[2.13]H. A. Washburn, J. R. Sites, and H. H. Wieder, “Electronic profile of n -lnAs on semi-insulating GaAs” J. Appl. Phys. 50, 4872 (1977).
[2.14]J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, and William J. Schaff, “Effects of the narrow band gap on the properties of InN”, Phys. Rev. B 66, 201403 (2002).
[2.15]J. Furthmüller, P. H. Hahn, F. Fuchs, and F. Bechstedt, “Band structures and optical spectra of InN polymorphs: Influence of quasiparticle and excitonic effects”, Phys. Rev. B 72, 205106 (2005).
[2.16]Akihiko Yoshikawa, Xinqiang Wang, Yoshihiro Ishitani, and Akira Uedono, “Recent advances and challenges for successful p-type control of InN films with Mg acceptor doping by molecular beam epitaxy” Phys. Status Solidi A 207, 1011 (2010). Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.
[2.17]R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J.W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Evidence for p-Type Doping of InN”, Phys. Rev. Lett 96, 125505 (2006)
[2.18]I. Mahboob, T. D. Veal, L. F. J. Piper, C. F. McConville, Hai Lu and W. J. Schaff, J. Furthmu¨ller and F. Bechstedt, “Origin of electron accumulation at wurtzite InN surfaces”, Phys. Rev. B 69, 201307 (2004).
[2.19]I. Mahboob, T. D. Veal, C. F. McConville, H. Lu and W. J. Schaff, “Intrinsic Electron Accumulation at Clean InN Surfaces”, Phys. Rev. Lett. 92, 036804 (2004).
[2.20]Neil W. Ashcraft, and N. David Mermin, “Solid State Physics”. Harcourt.
(1976).
[2.21]P. A. Anderson, C. H. Swartz, D. Carder, R. J. Reeves, and S. M. Durbin, S. Chandril and T. H. Myers, “Buried p-type layers in Mg-doped InN” Appl. Phys. Lett. 89, 184104-1 (2006).
[2.22]V. Yu. Davydov, A. A. Klochikhin, M. B. Smirnov, A. N. Smirnov, I. N. Goncharuk, and D. A. Kurdyukov, Hai Lu, William J. Schaff, H.-M. Lee, H.-W. Lin, and S. Gwo, “Experimental and theoretical studies of lattice dynamics of Mg-doped InN”, Appl. Phys. Lett. 91, 111917 (2007).
[2.23]Y.-M. Chang, Y.-L. Hong, and S. Gwo, “Direct probe of the built-in electric field of Mg-doped a-plane wurtzite InN surfaces with time-resolved electric-field-induced second harmonic generation” , Appl. Phys. Lett. 93, 131106 (2008).
[2.24]Kian-Giap Gan, Chi-Kuang Sun, Steven P. DenBaars and John E. Bowers, “Ultrafast valence intersubband hole relaxation in InGaN multiple-quantum-well laser diodes”, Appl. Phys. Lett. 84, 4675 (2004). Copyright American Institute of Physics. Reproduced with permission.
[2.25]Kasic A, Schubert M, Saito Y, Nanishi Y and Wagner G, “Effective electron mass and phonon modes in n-type hexagonal InN”, Phys. Rev. B 65, 115206 (2002).
[2.26]Inushima T, Higashiwaki M and Matsui T, “Optical properties of Si-doped InN grown on sapphire (0001)”, Phys. Rev. B 68 235204 (2003)
[2.27]C. Persson, A. Ferreira da Silva, “Linear optical response of zinc-blende and wurtzite III-N (III=B, Al, Ga, and In)”, J. Cryst. Growth 305,408 (2007)
[2.28]T. Brudevoll, T. A. Fjeldly, J. Baek and M. S. Shur, “Scattering rates for holes near the valence-band edge in semiconductors”, J. Appl. Phys. 67, 7373 (1990).
[2.29]J. A. Kash, “Carrier-carrier scattering in GaAs: Quantitative measurements from hot (e,A0) luminescence”, Phys. Rev. B 40, 3455 (1989).
[2.30]D. Zanato, N. Balkan, B. K. Ridley, G. Hill, and W. J. Schaff, “Hot electron cooling rates via the emission of LO-phonons in InN”, Semicond. Sci. Technol. 19, 1024 (2004).
[2.31]D.-J. Jang, G.-T. Lin, C.-L. Wu, C.-L. Hsiao, L.-W. Tu, and M.-E. Lee, “Energy relaxation of InN thin films”, Appl. Phys. Lett. 91, 092108 (2007).
[2.32]T. R. Tsai, C.-F. Chang, and S. Gwo, “Ultrafast hot electron relaxation time anomaly in InN epitaxial films”, Appl. Phys. Lett. 90, 252111 (2007)
[2.33]N. Del Fatti, P. Langot, R. Tommasi and F. Vallée, “Ultrafast hole-phonon interactions in GaAs”, Appl. Phys. Lett. 71, 75 (1997).
[2.34]S. Das Sarma, “Quantum Many-Body Aspects of Hot-Carrier Relaxation In Semiconductor Microstructures” in page 90 of “Hot Carriers In Semiconductor Nanostructures” as figure 1, edited by Jagdeep Shah (1992).
[2.35]W. Pötz, P. Kocevar, “Cooling of Highly Photoexcited Electron-Hole Plasma In Polar Semiconductors And Semiconductor Quantum Wells: A Balance-Equation Approach” in “Hot Carriers In Semiconductor Nanostructures” edited by Jagdeep Shah. New Jersey (1992).
[2.36]P. Langot, N. Del Fatti, D. Christofilos, R. Tommasi and F. Vallée, “Femtosecond investigation of the hot-phonon effect in GaAs at room temperature”, Phys. Rev. B 54 14487 (1996)
[2.37]J. W. Pomeroy, M. Kuball, H. Lu, W. J. Schaff, X. Wang, and A. Yoshikawa, “Phonon lifetimes and phonon decay in InN”, Appl. Phys. Lett. 86, 223501 (2005).
[2.38]Y.-M. Chang, H. W. Chu, C.-H. Shen, and S. Gwo, “Identification of surface optical phonon in wurtzite InN epitaxial thin films by coherent phonon spectroscopy”, Appl. Phys. Lett. 90, 072110 (2007).
[2.39]Y.-M. Chang and S. Gwo, “Direct measurement of momentum relaxation time in wurtzite InN”, J. Appl. Phys. 102, 083540 (2007).
[2.40]C. Kittel, “Introduction to Solid State Physics”. 8th edition. New York: Wiley. (2005).
[2.41]J. S. Thakur, D. Haddad, V. M. Naik, R. Naik, G. W. Auner, H. Lu, and W. J. Schaff, “A1(LO) phonon structure in degenerate InN semiconductor films” Phys. Rev. B 71, 115203 (2005).
[2.42]Y.-C. Wen, C.-Y. Chen, C.-H. Shen, S. Gwo, and C.-K. Sun, “Ultrafast carrier thermalization in InN” Appl. Phys. Lett. 89, 232114 (2006).
[2.43]E. J. Yoffa, “Screening of hot-carrier relaxation in highly photoexcited semiconductors” Phys. Rev. B 23, 1909 (1981).
[2.44]M. A. Rodriuez, J. L. Carrillo, and J. Reyes, “Thermalization and cooling processes in a dense photogenerated plasma in polar semiconductors: Effects of screening and phonon heating” Phys. Rev. B 35, 6318(1987).
[2.45]Yi-En Su, Yu-Chieh Wen, Hong-Mao Lee, Shangjr Gwo and Chi-Kuang Sun, “Observation of sub-100 femtosecond electron cooling time in InN” Appl. Phys. Lett. 96, 052108 (2010).
[2.46]F. Chen, A. N. Cartwright, H. Lu, and W. J. Schaff, “Time-resolved spectroscopy of recombination and relaxation dynamics in InN”, Appl. Phys. Lett. 83, 4984 (2003).
[2.47]R. Ascázubi, I. Wilke, S. Cho, H. Lu, and W. J. Schaff, “Ultrafast recombination in Si-doped InN” Appl. Phys. Lett. 88, 112111 (2006).
[2.48]V. Pacebutas, G. Aleksejenko, A. Krotkus, J. W. Ager III, W. Walukiewicz,H. Lu, and W. J. Schaff, “Optical bleaching effect in InN epitaxial layers”, Appl. Phys. Lett. 88, 191109 (2006).
[2.49]S. Z. Sun, Y. C. Wen, S. H. Guol, H. M. Lee, S. Gwo, and C.-K. Sun, “Observation of femtosecond carrier thermalization time in indium nitride”, Appl. Phys. Lett. 103, 123513 (2008)
[3.1]C. Kittel, Introduction to Solid State Physics. 8th edition. New York: Wiley. (2005).
[3.2]Neil W. Ashcraft, and N. David Mermin, “Solid State Physics”. Harcourt.
(1976).
[3.3]Y. C. Wen, C. Y. Chen, C. H. Shen, S. Gwo, and C. K. Sun, ” Ultrafast carrier thermalization in InN”, Appl. Phys. Lett. 89, 232114 (2006).
[3.4]S. Z. Sun, Y. C. Wen, S. H. Guol, H. M. Lee, S. Gwo, and C.-K. Sun, “Observation of femtosecond carrier thermalization time in indium nitride”, Appl. Phys. Lett. 103, 123513 (2008)
[3.5]Yi-En Su, Yu-Chieh Wen, Hong-Mao Lee, Shangjr Gwo and Chi-Kuang Sun, “Observation of sub-100 femtosecond electron cooling time in InN” Appl. Phys. Lett. 96, 052108 (2010).
[3.6]Masayuki Fujiwara, Yoshihiro Ishitani, Xinqiang Wang, Song-Bek Che, and Akihiko Yoshikawa, “Infrared analysis of hole properties of Mg-doped p-type InN films”, Appl. Phys. Lett. 93, 231903 (2008)
[4.1]P. Langot, N. Del Fatti, D. Christofilos, R. Tommasi and F. Vallée, “Femtosecond investigation of the hot-phonon effect in GaAs at room temperature”, Phys. Rev. B 54 14487 (1996)
[4.2] G. Tamulaitis and A. Zˇ ukauskas, J. W. Yang and M. A. Khan, M. S. Shur, and R. Gaska, “Heating of photogenerated electrons and holes in highly excited GaN epilayers”, Appl. Phys. Lett. 75, 2277 (1999).
[4.3]Hong Ye, G. W. Wicks, and P. M. Fauchet, “Hot hole relaxation dynamics in p-GaN”, Appl. Phys. Lett. 77, 1185 (2000).
[4.4]Kian-Giap Gan, Chi-Kuang Sun, Steven P. DenBaars and John E. Bowers, “Ultrafast valence intersubband hole relaxation in InGaN multiple-quantum-well laser diodes”, Appl. Phys. Lett. 84, 4675 (2004).
[4.5]R. Tommasi, P. Langot, and F. Vallée, “Femtosecond hole thermalization in bulk GaAs”, Appl. Phys. Lett. 66, 1361 (1995).
[4.6]N. Del Fatti, P. Langot, R. Tommasi and F. Valle´e, “Ultrafast hole–phonon interactions in GaAs” Appl. Phys. Lett. 71, 75 (1997).
[4.7]P. Langot, R. Tommasi and F. Valle´e, “Cold-Phonon Effect on Electron Heating In GaAs” Solid State Communication 98,171 (1996)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔