(44.192.112.123) 您好!臺灣時間:2021/03/07 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林垠呈
研究生(外文):Yin-Cheng Lin
論文名稱:摻雜氧化鎂鈮酸鋰之帶狀波導綠光雷射晶片之研製
論文名稱(外文):Design and Fabrication of Periodically Poled Magnesium-Doped Lithium Niobate Strip Waveguide Green Lasers
指導教授:王維新王維新引用關係
指導教授(外文):Way-Seen Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:77
中文關鍵詞:綠光雷射週期性極化反轉摻雜氧化鎂鈮酸鋰帶狀波導鎵波導鋅鎳波導
外文關鍵詞:green laserperiodically-poled magnesium-doped lithium niobate (PPMgO: LN)zinc-and-nickel co-diffusiongallium diffusion
相關次數:
  • 被引用被引用:2
  • 點閱點閱:114
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文之目的在研究波長532nm的綠光雷射,採用的方法是在摻雜氧化鎂鈮酸鋰晶片上製作出第一階倍頻準一維週期性反轉結構帶狀波導,再以1064nm基頻光耦合至光波導,並量測其輸出之綠光功率。實驗結果發現透過波導對光場之侷限性,可提高綠光倍頻之轉換效率。
本論文所使用的波導有鋅鎳共同擴散波導及鎵擴散波導兩種。 在波導製程方面,鋅鎳共同擴散波導寬度為160μm,可單導TM模態,量測結果符合極化與製程相依之特性;鎵擴散波導寬度亦為160μm,可單導TM模態,量測結果亦符合前人所作之結果。
在綠光量測方面係以8mW的 1064nm基頻光耦合至光波導。鋅鎳波導和鎵波導的外部轉換效率分別為22%和18%。入射波導最大功率可由6mW提升至8mW。這顯示利用摻雜氧化鎂之鈮酸鋰有助於光損害閥值的提升,即有助於提升入射光強度的峰值。
附錄為利用氧化鎵擴散製造脊形結構的新方法,其優點是可簡化製造過程。



First order quasi one-dimensional (1-D) periodically-poled magnesium-doped lithium niobate (PPMgO: LN) optical strip waveguides are presented. Green laser of wavelength 532nm is obtained when launched with an incident laser of wavelength 1064nm. Experimental results show the conservation efficiencies are increased owing to the waveguide structures.
For comparison, two special waveguides of the same width 160μm are fabricated by zinc-and-nickel co-diffusion and gallium diffusion, respectively. The zinc-and-nickel co-diffusion waveguides are verified to have process-dependent polarizations. However, only transverse magnetic (TM) mode waveguides are used because of larger diffusion depth for easy coupling. Similarly, only TM modes are supported in the gallium diffusion waveguides, which agrees quite well with those reported previously.
When an incident laser of 8mW is coupled to the waveguides, the measured green laser conversion efficiencies are 22% and 18% for zinc-and-nickel and gallium diffusion waveguides, respectively. Comparing to those without waveguide structures on lithium niobate substrate, the allowable maximum input power is increased from 6mW to 8mW. That’s because the optical damage threshold of magnesium-doped lithium niobate is increased.
Finally, in the appendix, a simple method for the fabrication of ridge structure by using gallium diffusion is proposed.





目錄
中文摘要
英文摘要
目錄
附表目錄
附圖目錄
第一章 緒論……………………………………………………………..1
1-1 研究背景….……………...………………………………...1
1-2 研究動機………………...…………………………………3
1-3 內容簡介……………...……………………………………3
第二章 光波導及非線性光學原理……………………………………..5
2-1 材料性質介紹……………………………………………...5
2-2 光波導簡介……………………………………………….11
2-3鋅鎳及鎵擴散式鈮酸鋰光波導…………………………..13
2-3-1鋅鎳共同擴散式鈮酸鋰光波導………………....13
2-3-2 鎵擴散式鈮酸鋰光波導………………………….16
2-4 非線性光學簡介………………………………..………..17
2-5 準相位匹配理論介紹……...…………………………….22
第三章 光波導與週期性極化反轉元件製作………………………....27
3-1 鋅鎳共同擴散帶狀波導製作…………………………….27
3-2 週期性極化反轉製作與結果…………………………….34
3-2-1 高壓電致極化反轉介紹......……………………….34
3-2-2 高壓電致極化反轉設置…………………………...36
3-2-3液態電極結構……..………………………………...37
3-2-4反轉結構製作及結果…………..…………………...38
第四章 光學量測與分析………………………………………………41
4-1 光波導特性量測………………………………………….41
4-1-1 光場量測架構…………………..………………….41
4-1-2 光場分析圖…..…………………………………….42
4-2 綠光倍頻轉換量測架構………………………………….44
4-3 倍頻結果與分析………………………………………….46
4-4 匹配溫度位移分析……………………………………….49
第五章 結論……………………………………………………………52
附錄A…………………………………………………………………...54
A-1 脊形光波導製作...……………………..………………...54
A-2鎵擴散式脊形光波導製作………..……………………...57
A-3 質子交換蝕刻法………..………………………………..59
A-4 脊形製作結果與量測….………………………………...61
A-5 附錄結論…………………………………………………64
參考文獻………………………………………………………………..65
中英文名詞對照表…………………………………………………….72
附表目錄
表2-1-1非線性晶體之特性比較……………..…………………………5
表2-1-2 鈮酸鋰晶體的基本特性…………………….…………………7
表4-1 Sellmeier 方程式係數值………………………………………..46
表4-2計算1064nm與532nm之非普極化折射率差…………………..50
表4-3計算表面濃度參數值……………………………………………51
表A-1苯甲酸與焦磷酸的基本特性……………………...……………61
表A-2鎵擴散式脊形波導製程條件………………………...…………61
附圖目錄
圖2-1鈮酸鋰的鐵電相與順電相……………………………….……….8
圖2-2鐵電相時,鋰離子在氧平面附近兩處穩態位能圖………………9
圖2-3常用非線性晶體之光損害閥值與氧化鎂摻雜關係圖…………11
圖2-4質子交換是波導折射率變化成階梯函數示意圖……………....13
圖2-5金屬離子對折射率差模型………………………...…………….15
圖2-6金屬濃度與擴散時間關係圖…………………………………....15
圖2-7和頻產生示意圖…………………………………………………18
圖2-8差頻產生示意圖…………………………………………………18
圖2-9倍頻產生示意圖…………………………………………………19
圖2-10倍頻光強度與行進距離關係圖………………………………..25
圖3-1綠光雷射元件製作流程示意圖…………………………………27
圖3-2鋅鎳共同擴散帶狀式波導製程…………………………………28
圖3-3鋅鎳兩段式升溫曲線圖…………………………………………32
圖3-4鋅鎳擴散條件與導通極性對照圖………………………………33
圖3-5鋅鎳擴散式波導端面圖…………………………………………34
圖3-6高壓電致週期性極化反轉的成核側擴散模型…………………35
圖3-7高壓電致極化反轉裝置…………………………………………36
圖3-8液態電極架構……………………………………………………37
圖3-9極化反轉製程流程圖……………………………………..……..38
圖3-10準一維極化反轉圖形曝光比較………………………………..39
圖3-11反轉外加高壓波形……………………………………………..39
圖3-12準一維極化反轉圖形…………………………………………..40
圖4-1光場量測系統架構………………………………………………41
圖4-2鋅鎳波導光場圖………………………………………………....43
圖4-3鎵擴散式波導,TM光場圖………………………...……………43
圖4-4非波導區域綠光倍頻實驗架構…………………………………44
圖4-5波導區域綠光倍頻量測…………………………………………45
圖4-6第一階綠光倍頻週期與溫度關係………………………………47
圖4-7鋅鎳波導之匹配溫度曲線………………………………………48
圖4-8鎵擴散波導之匹配溫度曲線……………………………………48
圖4-9鋅鎳波導區域轉換效率…………………………………………49
圖4-10鎵波導區域轉換效率……………………………………..……49
圖A-1傳統脊形結構波導製作流程…………………………………...56
圖A-2鎵擴散式脊形波導製程示意圖…………...……………………58
圖A-3脊形端面圖…………………………...…………………………60
圖A-4白光干涉儀量測脊形結構圖…………..………………….……62
圖A-5蝕刻條件與脊形深度比較圖…………...………………………63
圖A-6鎵擴散式脊形波導光場圖……………………………………63

[1] T.H. Maiman, “Stimulated optical emission in ruby,” J. of the Optical Society of America, vol. 50, pp.1134-1134, 1960.

[2] P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill, “Generation of optical harmonics,” Phys. Rev. Lett., vol.7, pp. 118-119,1961.

[3] J.A. Armstrong, N. Bloembergen, J. Ducuing, and P.S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp.1918-1939, 1962.

[4] M. Uebernickel, C. Fiebig, G. Blume, K. Paschke, B. Eppich, R. Güther, and G. Erbert, “400 mW and 16.5% wavelength conversion efficiency at 488 nm using a diode laser and a PPLN crystal in single pass configuration,” Jpn. J. Appl. Phys., vol. 93, pp. 823-827, 2008.

[5] Y. Kitaoka, T. Yokoyama, K. Mizuuchi, and K. Yamamoto, “Miniaturized blue laser using second harmonic generation,” Jpn. J. Appl. Phys., vol.39 no. 6A, pp.3416-3418, 2000.

[6] K. Sakai, Y. Koyata, N. Shimada, K. Shibata, Y. Hanamaki, S. Itakura, T. Yagi, and Y. Hirano1, “Master-oscillator power-amplifier scheme for efficient green-light generation in a planar MgO:PPLN waveguide,” Opt. Lett., vol., 33, no.5, pp. 431-433,2008.

[7] C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, and M. M. Fejer, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett., vol., 30, no.13, pp. 1725-1727,2005.

[8] Y. L. Lee, B. A. Yu, C. Jung, Y. C. Noh, J. Lee, and D. K. Ko, “ All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide,” J. of the Optical Society of America, vol.13, no.8, pp. 2988-2993, 2005.

[9] W M. Young and R. S. Feigelson, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO3,” Opt. Lett., vol. 16, no.13, pp. 995-997, 1991.

[10] 徐文浩,“鋅鎳擴散式鈮酸鋰光波導元件之特性與應用”,國立台灣大學光電工程學研究所博士論文,2006年。

[11] X. Zhen, R. Wang, W. Xu, Y. Xu, and L. Zhao, “Study on photodamage of Mg:Ga:LiNbO3 crystal wave-guide substrate,” Optical Materials, pp.427-431, 2002.

[12] 黃文宏,“鎵擴散式鈮酸鋰光波導特性之研究”,國立台灣大 學光電工程學研究所博士論文,2008年。

[13] M. Minakata, S. Saito, M. Shibata, and S. Miyazawa, “Precise determination of refractive-index changes in Ti-diffused LiNbO3 optical waveguides,” J. Appl. Phys., vol. 49, no. 9, pp. 4677-4682, 1978.

[14] J. L. Jackel, “Suppression of out diffusion in Ti diffused LiNbO3: a review,” J. Opt. Commun., vol. 3, pp. 82-85, 1982.

[15] Y.P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Technol. Lett., vol. 8, no. 4, pp. 548-550, 1996.

[16] R. L. Byer, J. F. Young, and Feigelso.Rs, “Growth of high-quality LiNbO3 crystals from congruent melt,” J. Appl. Phys., vol. 41, pp. 2320, 1970.

[17] INSPEC, Properties of Lithium Niobate, EMIS Datareviews, series no.5, 1989.

[18] A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation, Wiley,1984.

[19] K. Kitamura, Y. Furukawa, S.Takekawa, T. Hatanaka, H Ito, and V. Gopalan, “Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices,” Ferroelectrics, vol. 257, pp. 235-243, 2001.

[20] R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., vol. 25, no. 8, pp. 458-460, 1974.

[21] J. Noda, M. Fukuma, and A. Saito, “Effect of Mg diffusion on Ti-diffused LiNbO3 waveguide,” J. Appl. Phys., vol. 49, no. 6, pp. 3150-3154, 1978.

[22] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, “Fabrication of magnesium-oxide-induced lithium outdiffusion waveguides,” IEEE Photon. Tech. Lett, vol. 4, no. 8, pp. 872-875, 1992.

[23] D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. Laybourn, and D. L. Rue, “Characteristic of proton exchanges slab waveguide on Z-cut LiNbO3 waveguide,” J. Appl. Phys., vol. 40, pp. 6218-6220, 1983.

[24] V. M. N. Passaro, M. N. Armenise, D. Nesheva, and E. Y. B. Pun, “LiNbO3 optical waveguides formed in a new proton source,” J. Lightwave Tech., vol. 20, pp. 71-77, no. 1, 2002.

[25] R. G. Hunsperger, Intergrated Optics: Theory and Technology 5th Ed., Springer, 2002.

[26] 廖裕評,“金屬擴散式極化分離器之研製”,國立台灣大學電機工程學研究所博士論文,1996年。

[27] M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys., vol. 77, no. 2, pp. 686-693, Jan. 1995.

[28] X. H. Zhen, R. Wang, W. S. Xu, Y. H. Xu, and L. C. Zhao, “Study on photodamage of Mg:Ga:LiNbO3 crystal wave-guide substrate,” Opt. Mater., vol. 19, pp. 427-431, 2002.

[29] K. Nakamura, H. Ando, and H. Shirnizu, “Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment,” Appl. Phys. Lett., vol. 50, no. 20, pp. 1413-1414, 1987.

[30] 林揆倫,“具脊狀波導結構之準相位匹配綠光倍頻晶體研究”,國立台灣大學光電工程學研究所碩士論文,2008年。

[31] R. C. Miller and G. Weinreich, “Mechanism for the sidewise motion of 180° domain walls in barium titanate,” Physical Review, vol. 117, pp. 1460-1466, 1960.

[32] G. D. Miller, Periodically Poled Lithium Niobate: Modeling, Fabrication, and Nonlinear-Optical Performance, 1998.

[33] 李俊瑩,“摻雜氧化鎂鈮酸鋰之準相位匹配綠光倍頻雷射晶片研製”,國立台灣大學光電工程學研究所碩士論文,2009。

[34] L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. of the Optical Society of America B, vol. 12, pp. 2102, 1995.

[35] O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B-Lasers and Optics, vol. 91, pp. 343-348, May 2008.

[36] 游文俊,“週期性極化反轉鈮酸鋰帶狀波導綠光雷射之研究”,國立台灣大學光電工程學研究所碩士論文,2009。

[37] 陳瑞鑫,“利用濕式蝕刻法研製之脊形鈮酸鋰光波導元件”,國立台灣大學電機工程學研究所博士論文,1996年。

[38] F. Laurell, J. Webjorn, G. Arvidsson and J. Holmberg, “Wet etching of proton-exchanged lithium niobate-a novel processing technique,” J. Lightwave Technol. Vol. 10, pp. 1606-1609, 1992.

[39] Y. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on z-cut lithium niobate,” Appl. Opt., vol. 35, no. 36, pp. 7056-7060, 1996.

[40] N. Goto and G. L. Yip, “Characterization of proton-exchange and annealed LiNbO3 waveguides with pyrophosphoric acid,” Appl. Opt., vol. 28, No. 1, pp.60-65, 1989.

[41] K. Yamamoto and T.Taniuchi, “Characteristics of pyrophosphoric acid proton-exchanged waveguides in LiNbO3,” J. Appl. Phys., vol. 70, No. 11, pp. 6663-6668, 1991.

[42] Y. S. Son, H. J. Lee, Y. K. Jhee, S. Y. Shin, and B. G. Kim, “Fabrication of LiNbO3 channel waveguides using water,” IEEE Photon. Tech. Lett., vol. 4, No.5, pp. 457-459, 1992.

[43] 曾瑋驊,“以混合酸質子交換濕式蝕刻法研製鈮酸鋰脊形光波導”,國立台灣大學電子工程學研究所碩士論文,2008年。

[44] C. Langrock, S. Kumar, J. E. Mcgeehan, A. E. Willner, M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol., vol. 24, no. 7, 2006.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔