[1] T.H. Maiman, “Stimulated optical emission in ruby,” J. of the Optical Society of America, vol. 50, pp.1134-1134, 1960.
[2] P. A. Franken, G. Weinreich, C. W. Peters, and A. E. Hill, “Generation of optical harmonics,” Phys. Rev. Lett., vol.7, pp. 118-119,1961.
[3] J.A. Armstrong, N. Bloembergen, J. Ducuing, and P.S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp.1918-1939, 1962.
[4] M. Uebernickel, C. Fiebig, G. Blume, K. Paschke, B. Eppich, R. Güther, and G. Erbert, “400 mW and 16.5% wavelength conversion efficiency at 488 nm using a diode laser and a PPLN crystal in single pass configuration,” Jpn. J. Appl. Phys., vol. 93, pp. 823-827, 2008.
[5] Y. Kitaoka, T. Yokoyama, K. Mizuuchi, and K. Yamamoto, “Miniaturized blue laser using second harmonic generation,” Jpn. J. Appl. Phys., vol.39 no. 6A, pp.3416-3418, 2000.
[6] K. Sakai, Y. Koyata, N. Shimada, K. Shibata, Y. Hanamaki, S. Itakura, T. Yagi, and Y. Hirano1, “Master-oscillator power-amplifier scheme for efficient green-light generation in a planar MgO:PPLN waveguide,” Opt. Lett., vol., 33, no.5, pp. 431-433,2008.
[7] C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, and M. M. Fejer, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides,” Opt. Lett., vol., 30, no.13, pp. 1725-1727,2005.
[8] Y. L. Lee, B. A. Yu, C. Jung, Y. C. Noh, J. Lee, and D. K. Ko, “ All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide,” J. of the Optical Society of America, vol.13, no.8, pp. 2988-2993, 2005.
[9] W M. Young and R. S. Feigelson, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO:LiNbO3,” Opt. Lett., vol. 16, no.13, pp. 995-997, 1991.
[10] 徐文浩,“鋅鎳擴散式鈮酸鋰光波導元件之特性與應用”,國立台灣大學光電工程學研究所博士論文,2006年。[11] X. Zhen, R. Wang, W. Xu, Y. Xu, and L. Zhao, “Study on photodamage of Mg:Ga:LiNbO3 crystal wave-guide substrate,” Optical Materials, pp.427-431, 2002.
[12] 黃文宏,“鎵擴散式鈮酸鋰光波導特性之研究”,國立台灣大 學光電工程學研究所博士論文,2008年。[13] M. Minakata, S. Saito, M. Shibata, and S. Miyazawa, “Precise determination of refractive-index changes in Ti-diffused LiNbO3 optical waveguides,” J. Appl. Phys., vol. 49, no. 9, pp. 4677-4682, 1978.
[14] J. L. Jackel, “Suppression of out diffusion in Ti diffused LiNbO3: a review,” J. Opt. Commun., vol. 3, pp. 82-85, 1982.
[15] Y.P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Technol. Lett., vol. 8, no. 4, pp. 548-550, 1996.
[16] R. L. Byer, J. F. Young, and Feigelso.Rs, “Growth of high-quality LiNbO3 crystals from congruent melt,” J. Appl. Phys., vol. 41, pp. 2320, 1970.
[17] INSPEC, Properties of Lithium Niobate, EMIS Datareviews, series no.5, 1989.
[18] A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation, Wiley,1984.
[19] K. Kitamura, Y. Furukawa, S.Takekawa, T. Hatanaka, H Ito, and V. Gopalan, “Non-stoichiometric control of LiNbO3 and LiTaO3 in ferroelectric domain engineering for optical devices,” Ferroelectrics, vol. 257, pp. 235-243, 2001.
[20] R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., vol. 25, no. 8, pp. 458-460, 1974.
[21] J. Noda, M. Fukuma, and A. Saito, “Effect of Mg diffusion on Ti-diffused LiNbO3 waveguide,” J. Appl. Phys., vol. 49, no. 6, pp. 3150-3154, 1978.
[22] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, “Fabrication of magnesium-oxide-induced lithium outdiffusion waveguides,” IEEE Photon. Tech. Lett, vol. 4, no. 8, pp. 872-875, 1992.
[23] D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. Laybourn, and D. L. Rue, “Characteristic of proton exchanges slab waveguide on Z-cut LiNbO3 waveguide,” J. Appl. Phys., vol. 40, pp. 6218-6220, 1983.
[24] V. M. N. Passaro, M. N. Armenise, D. Nesheva, and E. Y. B. Pun, “LiNbO3 optical waveguides formed in a new proton source,” J. Lightwave Tech., vol. 20, pp. 71-77, no. 1, 2002.
[25] R. G. Hunsperger, Intergrated Optics: Theory and Technology 5th Ed., Springer, 2002.
[26] 廖裕評,“金屬擴散式極化分離器之研製”,國立台灣大學電機工程學研究所博士論文,1996年。[27] M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applications,” J. Appl. Phys., vol. 77, no. 2, pp. 686-693, Jan. 1995.
[28] X. H. Zhen, R. Wang, W. S. Xu, Y. H. Xu, and L. C. Zhao, “Study on photodamage of Mg:Ga:LiNbO3 crystal wave-guide substrate,” Opt. Mater., vol. 19, pp. 427-431, 2002.
[29] K. Nakamura, H. Ando, and H. Shirnizu, “Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment,” Appl. Phys. Lett., vol. 50, no. 20, pp. 1413-1414, 1987.
[30] 林揆倫,“具脊狀波導結構之準相位匹配綠光倍頻晶體研究”,國立台灣大學光電工程學研究所碩士論文,2008年。[31] R. C. Miller and G. Weinreich, “Mechanism for the sidewise motion of 180° domain walls in barium titanate,” Physical Review, vol. 117, pp. 1460-1466, 1960.
[32] G. D. Miller, Periodically Poled Lithium Niobate: Modeling, Fabrication, and Nonlinear-Optical Performance, 1998.
[33] 李俊瑩,“摻雜氧化鎂鈮酸鋰之準相位匹配綠光倍頻雷射晶片研製”,國立台灣大學光電工程學研究所碩士論文,2009。[34] L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. of the Optical Society of America B, vol. 12, pp. 2102, 1995.
[35] O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B-Lasers and Optics, vol. 91, pp. 343-348, May 2008.
[36] 游文俊,“週期性極化反轉鈮酸鋰帶狀波導綠光雷射之研究”,國立台灣大學光電工程學研究所碩士論文,2009。[37] 陳瑞鑫,“利用濕式蝕刻法研製之脊形鈮酸鋰光波導元件”,國立台灣大學電機工程學研究所博士論文,1996年。[38] F. Laurell, J. Webjorn, G. Arvidsson and J. Holmberg, “Wet etching of proton-exchanged lithium niobate-a novel processing technique,” J. Lightwave Technol. Vol. 10, pp. 1606-1609, 1992.
[39] Y. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on z-cut lithium niobate,” Appl. Opt., vol. 35, no. 36, pp. 7056-7060, 1996.
[40] N. Goto and G. L. Yip, “Characterization of proton-exchange and annealed LiNbO3 waveguides with pyrophosphoric acid,” Appl. Opt., vol. 28, No. 1, pp.60-65, 1989.
[41] K. Yamamoto and T.Taniuchi, “Characteristics of pyrophosphoric acid proton-exchanged waveguides in LiNbO3,” J. Appl. Phys., vol. 70, No. 11, pp. 6663-6668, 1991.
[42] Y. S. Son, H. J. Lee, Y. K. Jhee, S. Y. Shin, and B. G. Kim, “Fabrication of LiNbO3 channel waveguides using water,” IEEE Photon. Tech. Lett., vol. 4, No.5, pp. 457-459, 1992.
[43] 曾瑋驊,“以混合酸質子交換濕式蝕刻法研製鈮酸鋰脊形光波導”,國立台灣大學電子工程學研究所碩士論文,2008年。[44] C. Langrock, S. Kumar, J. E. Mcgeehan, A. E. Willner, M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol., vol. 24, no. 7, 2006.