(3.237.178.91) 您好!臺灣時間:2021/03/02 23:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:藍右任
研究生(外文):You-Ren Lan
論文名稱:同步輻射X光吸收光譜以及X光光電子能譜術對氧化鋅鎂,二氧化鉿及銻磷砷化銦薄膜材料的特性研究
論文名稱(外文):Synchrotron Radiation X-ray Absorption and X-ray Photoelectron Spectroscopy Analysis of MgZnO, HfO2, and InAsPSb epitaxial materials
指導教授:馮哲川
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:135
中文關鍵詞:同步加速器輻射光源X光吸收光源精細結構頻譜圖X光光電子能譜術氧化鋅鎂二氧化鉿銻磷砷化銦
外文關鍵詞:Synchrotron Radiation (SR)X-ray absorption fine structure (XAFS)X-ray absorption spectroscopy (XAS)X-ray Photoelectron Spectroscopy (XPS)MgZnOHfO2InAsPSb
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
同步加速器光源是二十一尖端科學研究不可或缺的實驗工具,廣泛應用在材料、生物、醫藥、物理、化學、化工、物質、能源、電子、奈米元件等基礎與應用科學研究。光學量測對於分析半導體材料具有很重要的地位,尤其是對於材料的結構、特性,甚至是物理機制。而近幾年的半導體材料,由於它的材料特性非常適合應用在現今生活的電器設備用品上,譬如:發光二極體、積體電路原件…等,所以被廣泛而且深入的研究,縱使已經有不少上市產品應用半導體為材料,但是仍然有許多的問題與困難需要解答與突破,因此,我們將針對目前的許多挑戰做研究。
我們會利用各種不同的光學量測系統得到更多的材料特性,進而得出相互驗證的結果。在第三章,我們利用不同的分析技術來研究有機金屬化學氣相沈積磊晶法生長的氧化鋅鎂的結構特性以及電子組態。我們利用X光光電子能譜術以及同步輻射X光吸收光源精細結構頻譜圖來分析不同鎂含量的氧化鋅鎂,接著再利用X光繞射光譜以及拉曼光譜來佐證我的分析結果。在第四章,我們利用X光光電子能譜術,拉塞福背向散射,同步輻射X光吸收光源精細結構頻譜圖以及掠角X光繞射光譜分析不同生長條件的奈米材料二氧化鉿薄膜生長在矽基板上面的結構以及光學特性。我們在第五章中把重點放在銻磷化銦以氣態源分子束磊晶技術生長在砷化銦基板上,我們利用X光光電子能譜術以及同步輻射X光吸收光源精細結構頻譜圖來分析銻磷化銦的特性。


During the past decade, synchrotron light sources have become indispensable tools for advanced scientific research. Synchrotron light is used widely in basic and applied research throughout the fields of materials science, biology, medicine, physics, chemistry, chemical engineering, geology, energy, electronics, and nanotechnology. A series of optical characterization techniques, including X-ray absorption spectroscopy (XAS), X-ray Photoelectron Spectroscopy (XPS), Raman scattering, and X-ray diffraction (XRD) were employed to analyze II-VI and III-V compound semiconductors.
In chapter 3, we study the structural and electrical properties of MgxZn1-xO materials with wurtzite structure grown on sapphire substrate by Metal-Organic Chemical Vapor Deposition (MOCVD). MgxZn1-xO samples with different composition ratios were analyzed by various characterization techniques, including XPS, Synchrotron Radiation (SR) X-ray absorption fine structure (XAFS), XRD, and Raman scattering.
We investigate on the structural and optical characteristics of nanometer scale HfO2 thin film materials epitaxied on Si substrates with different growth condition, by XPS, Rutherford back-scattering (RBS), SR-XAFS, and grazing incidence x-ray diffraction (GIXRD) in chapter 4.
In chapter 5, it is focused on the InAsPSb thick epitaxial films grown on GaAs substrate by gas source molecular beam epitaxy (GSMBE). InAsPSb samples with different growth condition were investigated by XPS and SR-XAFS.


致謝................................................................................................................................i
摘要...............................................................................................................................ii
Abstract...........................................................................................................................iii
Content.............................................................................................................................v
Lists of Figures................................................................................................................ix
Lists of Tables..............................................................................................................xvii
Chapter 1 Introduction
1.1. What is Synchrotron Radiation?................................................................1
1.2. History of X-ray Sources..........................................................................2
1.3. Generation of Synchrotron Radiation Sources.........................................3
1.4. The Properties of Synchrotron Radiation................................................4
1.5. How is Synchrotron Light Produced?.......................................................5
1.6. Publication list..............................................7
References.................................................................................................................8
Chapter 2 Theoretical Background and Experimental Details
2.1 X-Ray Absorption Fine-Structure (XAFS)........................................9
2.1.1 X-ray absorption spectroscopy: principle and analysis...............9
2.1.2 X-ray Absorption Near Edge Structure (XANES)......................15
2.1.3 Extended X-ray Absorption Fine Structure (EXAFS)..............17
2.1.4 Polarized-dependence X-ray absorption fine structure.............21
2.2 X-ray Photoelectron Spectrometry (XPS)..............................................22
2.2.1 Introduction....................................................................................22
2.2.2 Spectral Features of XPS: Chemical Shifts.................................24
2.2.3 Spectral Features of XPS Doublet and Multiplet Splitting........25
2.2.4 The Application of XPS: Analysis of the Composition…........26
References...............................................................................................................28
Chapter 3 Investigations of MgZnO thin film materials on sapphire
3.1 Introduction...............................................................................................30
3.2 Experiment.................................................................................................32
3.3 Result and Discussion................................................................................35
3.3.1 X-ray Photoelectron Spectrometry (XPS).................................35
3.3.2 X-Ray Absorption Fine-Structure (XAFS).................................42
a. Extended X-ray Absorption Fine Structure (EXAFS)............42
b. X-ray Absorption Near Edge Structure (XANES).................48
3.3.3 X-ray Diffraction XRD(XRD)......................................................54
3.3.4 Raman scattering...........................................................................55
3.4 Conclusion..................................................................................................57
References..............................................................................................................59
Chapter 4 Investigations of HfO2 thin film on Si-based
4.1 Introduction...............................................................................................63
4.2 Experiment.................................................................................................64
4.3 Result and Discussion..........................................................................66
4.3.1 X-ray Photoelectron Spectrometry (XPS).................................66
4.3.2 Rutherford backscattering (RBS)................................................71
4.3.3 X-ray Absorption Near Edge Structure (XANES).................74
4.3.4 Grazing Incidence X-ray Diffraction (GIXRD)..........................78
4.3.5 High-resolution Transmission Electron Microscopy (HR-TEM).....................................................................................84
4.4 Conclusion........................................................................................85
References...............................................................................................................86
Chapter 5 Investigations of InAsPSb epitaxial materials on GaAs from molecular beam epitaxy
5.1 Introduction..............................................................................................89
5.2 Experiment.................................................................................................90
5.3 Result and Discussion................................................................................92
5.3.1 X-ray Photoelectron Spectrometry (XPS).................................92
5.3.2 Extended X-ray Absorption Fine Structure (EXAFS)...........98
5.4 Summary..................................................................................................104
References.............................................................................................................105
Chapter 6 Investigation on other materials
6.1 AlZnO...........................................................107
6.1.1 Introduction...................................................107
6.1.2 Experiment.....................................................108
6.1.3 Result and Discussion............................................109
a. Near Edge X-ray Absorption Spectroscopy (NEXAFS).........109
b. Raman scattering..................................................112
6.1.4 Summary........................................................115
6.2 InGaN/GaN/ZnO....................................................116
6.2.1 Sample information........................................................116
6.2.2 Result.....................................................116
6.3 Tb:SiO2......................................................118
6.3.1 Sample information......................................................118
6.3.2 Result..............................................................119
6.4 PbZrxTi1-xO3.................................................................................................127
6.4.1 Introduction...................................................127
6.4.2 Sample information............................................128
6.4.3 Result..........................................................128
a. Extended X-ray Absorption Fine Structure (EXAFS)............128
b. High-resolution Transmission Electron Microscopy (HR-TEM)......................................................................................129
6.5 Ba1-xSrxTiO3..................................................................................................130
6.5.1 Introduction............................................................130
6.5.2 Sample information............................................................130
6.5.3 Result..........................................................130
a. Extended X-ray Absorption Fine Structure (EXAFS)...........130
b. High-resolution Transmission Electron Microscopy (HR-TEM)......................................................................................131
References.............................................................................................................133


[1.1]http://old-www.ansto.gov.au/natfac/asrp4.html
[1.2]http://www.nsrrc.org.tw/english/lightsource.aspx
[1.3]http://www.slac.stanford.edu/gen/edu/educatiorn.html
[1.4]Synchrotron Light to Explore Matter, Copyright MediaSoft, ESRF and Springer-Verlag (2000).
[1.5]J. Schneider, G. Kaindl, C. Kunz, H. Dosch, D. Lour, E. J. Mittemeijer, X-Rays (Synchrotron Radiation), Advanced Analysis of Materials, pp. 238-243.
[2.1]J. J. Rehr, R. C.Albers, Rev. Mod. Phys. 621, 2 (2000).
[2.2]A.Messiah, Wiley, New York (1966).
[2.3]D. C. Koningsberger, and R. Prins, “X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES”, Wiley, New York, 126 (1988).
[2.4]J. Prins, North Holland, Amsterdam, 12 (1965).
[2.5]F. Lytle, J. Synchrotron Radiat. 6, 123 (1999).
[2.6]A. L. Ankudinov, J. J. Rehr, J. J. Low, S. R. Bare, Top. Catal. 18, 3 (2002).
[2.7]L.A. Grunes, Phys. Rev. B, 27,7111 (1983).
[2.8]J. E. Muller and J. W. Wilkins, Phys. Rev. B, 29, 4331 (1984).
[2.9]Christian Brouder, J. Phys. Condens. Matter. 2, 701 (1990).
[2.10]V. Gehanno, C. Revenant-Brizard, A. Marty, and B. Gilles, J. Appl. Phys. 84, 2316 (1998).
[2.11]R. A. Rosenberg, P. J. Love, and Victor Rehn, Phys. Rev. B, 33, 4034 (1986).
[2.12]H. Hertz, Ann. Physik, 31, 983 (1887).
[2.13]A. Einstein, Ann. Physik 17,132 (1905); 1921 Nobel Prize in Physics.
[2.14]K. Siegbahn, et al.,Nova Acta Regiae Soc.Sci., Ser. IV, Vol. 20 (1967); 1981 Nobel Prize in Physics.
[2.15]John C. Vickerman, ed., “Surface Analysis – The Principle Techniques”, New York: John Wiley & Sons (1997).
[2.16]K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S. E. Karlsson. I. Lindgren, and B. Linberg, ESCA: atomic, molecular and solid state structure studied by means of electron spectroscopy, Nova Acta Regiae Societatis Scientiarum Upsaliensis, Ser. IV, 20, 5-282 (1967).
[2.17]B. K. Agarwal, “X-Ray Spectroscopy”, Springer-Verlag (1979).
[2.18]潘扶民, “化學分析電子儀器分析”, 材料分析, Ch.13, 中國材料學會.
[2.19]Chastain J., and King R. C. Jr., “Handbook of X-ray Photoelectron Spectroscopy”, Physical Electronics Inc., p.25 (1995).
[2.20]John F. Moulder, William F. Stickle, Peter E. Sobol, and Kenneth D. Bomben, “Handbook of X-ray photoelectron spectroscopy”, published by physical electronics division of Perkin-Elmer Corporation, Eden Prairie, Minnesota 55344, USA (1992).
[2.21]C. D. Wagner et al., Surf. Interface Anal. 3, 211 (1981).
[3.1]Alexander Müller, Marko Stölzel, Christof Dietrich, Gabriele Benndorf, Michael Lorenz, and Marius Grundmann, J. Appl. Phys. 107, 013704 (2010).
[3.2]H. Zhu, C. X. Shan, B. H. Li, Z. Z. Zhang, J. Y. Zhang, B. Yao, D. Z. Shen, and X. W. Fan, J. Appl. Phys. 105, 103508 (2009).
[3.3]Kenji Yamamoto, Takako Tsuboi, Toshiya Ohashi, Takehiko Tawara, Hideki Gotoh, Atsushi Nakamura, and Jiro Temmyo, J. Cryst. Growth, 312, 1703 (2010).
[3.4]Q. Wan, C. L. Lin, X. B. Yu, and T. H. Wang, Appl. Phys. Lett. 84, 124 (2004).
[3.5]D. C. Look, B. Claflin, Ya. I. Alivov, and S. J. Park, Phys. Status Solid A, 201, 10 (2003).
[3.6]W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, S. M. Liu, R. Zhang, Y. Shi, Y. D. Zheng, Y. Hang and C. L. Zhang, Appl. Phys. Lett. 88, 092101 (2006).
[3.7]Wei Wei, Chunming Jin, Jagdish Narayan, Roger J. Narayan, Solid State Commun. 149, 1670 (2009).
[3.8]K. Maejima, H. Shibata, H. Tampo, K. Matsubara, and S. Niki, Thin Solid Films, 518, 2949 (2010).
[3.9]J. B. You, X. W. Zhang, S. G. Zhang, H. R. Tan, J. Ying, Z. G. Yin, Q. S. Zhu, and Paul K. Chu, J. Appl. Phys. 107, 083701 (2010).
[3.10]A. K. Sharma, J. Narayan, J. F. Muth, C. W. Teng, C. Jin, A. Kvit, R. M. Kolbas and O. W. Holland, Appl. Phys. Lett. 75, 3327 (1999).
[3.11]A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma and M. Kawasaki, Nat. Mater. 4, 42 (2005).
[3.12]A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi , H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998).
[3.13]W. I. Park, G. C. Yi and H. M. Jang, Appl. Phys. Lett. 79, 2022 (2001).
[3.14]R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr. Theor. Gen. Crystallogr. 32, 751 (1976).
[3.15]D. C. Look and B. Claflin, Phys. Status Solidi B, 241, 624 (2004).
[3.16]Y. S. Wang, J. Cryst. Growth, 304, 393 (2007).
[3.17]H. P. Zhou, W. Z. Shen, N. B. Chen and H. Z. Wu, Appl. Phys. Lett. 85, 3723 (2004).
[3.18]Z. Vashaei, T. Minegishi, H. Suzuki, T. Hanada, M. W. Cho, T. Yab and A. Setiawan, J. Appl. Phys. 98, 054911 (2005).
[3.19]Y. W. Heo, Y. W. Kwon, Y. Li, S. J. Pearton and D. P. Norton, Appl. Phys. Lett. 84, 3474 (2004).
[3.20]X. Zhang, X. M. Li, T. L. Chen, C. Y. Zhang, and W. D. Yu, Appl. Phys. Lett. 87, 092101 (2005).
[3.21]A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998).
[3.22]W. K. Wang, D. S. Wuu, S. H. Lin, S. Y. Huang, P. Han and R. H. Horng, J. J. Appl. Phys. 45, 3430 (2006).
[3.23]M. Newville, P. Livins, Y. Yacoby, J. J. Rehr, and E. A. Stern, Phys. Rev. B, 47, 14126 (1993).
[3.24]A. L. Ankudinov, B. Ravel, J. J. Rehr, S. D. Conradson, Phys. Rev. B, 58, 7565 (1998).
[3.25]J. Mustre de Leon, J. J. Rehr, S. I. Zabinsky, and R. C. Albers, Phys. Rev. B, 44, 4146 (1991).
[3.26]J. J. Rehr, J. Mustre de Leon, S. I. Zabinsky, and R. C. Albers, J. Am. Chem. Soc. 113, 5135 (1991).
[3.27]J. J. Rehr, S. I. Zabinsky, and R. C. Albers, Phys. Rev. Lett. 69, 3397 (1992).
[3.28]Young-Il Kim, Katharine Page, and Ram Seshadri, Appl. Phys. Lett. 90, 101904 (2007).
[3.29]C. Y. Liu, H. Y. Xu, L. Wang, X. H. Li, and Y. C. Liu, J. Appl. Phys. 106, 073518 (2009).
[3.30]J. C. A. Huang, H. S. Hsu, J. H. Sun, S. L. Chiu, C. H. Lee, Y. F. Liao, and H. Chou, J. Appl. Phys. 103, 07D128 (2008).
[3.31]J. W. Chiou, H. M. Tsai, C. W. Pao, K. P. Krishna Kumar, S. C. Ray, F. Z. Chien, W. F. Pong, M.-H. Tsai, C.-H. Chen, H.-J. Lin, J. J. Wu, M.-H. Yang, S. C. Liu, H. H. Chiang, and C. W. Chen, Appl. Phys. Lett. 89, 043121 (2006).
[3.32]J. W. Chiou, H. M. Tsai, C. W. Pao, F. Z. Chien, W. F. Pong, C. W. Chen, M.-H. Tsai, J. J. Wu, C. H. Ko, H. H. Chiang, H.-J. Lin, J. F. Lee, and J.-H. Guo, J. Appl. Phys. 104, 013709 (2008).
[3.33]Table of Periodic Properties of the Elements (Sargent-Welch Scientific, Skokie, IL, 1980).
[3.34]C. Thiandoume, A. Lusson, P. Galtier, V. Sallet, J. Cryst. Growth, 312, 1529 (2010).
[3.35]J. D. Ye, K. W. Teoh, X. W. Sun, G. Q. Lo, and D. L. Kwong, H. Zhao, S. L. Gu, R. Zhang, and Y. D. Zheng, S. A. Oh, X. H. Zhang, and S. Tripathy, Appl. Phys. Lett. 91, 091901 (2007).
[3.36]K. T. Ramakrishna Reddy, P. Prathap, N. Revathi, A. S. N. Reddy, R. W. Miles, Thin Solid Films, 518, 1275 (2009).
[3.37]J. F. Kong, W. Z. Shen, Y. W. Zhang, C. Yang, and X. M. Li, Appl. Phys. Lett. 92, 191910 (2008).
[4.1]Christopher L. Platt, Ning Li, Kejing Li, and Tonya M. Klein, Thin Solid Films, 518, 4081 (2010).
[4.2]L. Q. Zhu, N.Barrett, P. Jégou, F. Martin, C. Leroux, E. Martinez, H. Grampeix, O. Renault, and A. Chabli, J. Appl. Phys. 105, 024102 (2009).
[4.3]Luschitz, B. Siepchen, and J. Schaffner, Thin Solid Films, 517, 2125 (2009).
[4.4]Shingo Kuge and Haruhiko Yoshida, J. Appl. Phys. 105, 093708 (2009).
[4.5]M. L. Green, A. J. Allen, J. L. Jordan-Sweet, and J. Ilavsky, J. Appl. Phys. 105, 103522 (2009).
[4.6]Michael Shandalov and Paul C. McIntyre, J. Appl. Phys. 106, 084322 (2009).
[4.7]Ran Jiang and Zifeng Li, Semicond. Sci. Technol. 24, 065006 (2009).
[4.8]Jeong Chan Kim, Jung Shik Heo, Yong Seok Cho, and Sang Heup Moon, Thin Solid Films, 517, 5695 (2009).
[4.9]Justin C. Hackley and Theodosia Gougousi, Thin Solid Films, 517, 6576 (2009).
[4.10]L. Wang, Paul K. Chu, Andre Anders, and Nathan W. Cheung, J. Appl. Phys. 104, 054117 (2008).
[4.11]K. Cherkaoui, S. Monaghan, M. A. Negara, M. Modreanu, P. K. Hurley, D. O’Connell, S. McDonnell, G. Hughes, S. Wright, R. C. Barklie, P. Bailey, and T. C. Q. Noakes, J. Appl. Phys. 104, 064113 (2008).
[4.12]Massimo Tallarida, Konstantin Karavaev, and Dieter Schmeisser, J. Appl. Phys. 104, 064116 (2008).
[4.13]S.J. Chang, W.C. Lee, J. Hwang, M. Hong, and J. Kwo, Thin Solid Films, 516, 948 (2008).
[4.14]Jordi Sancho-Parramon, Mircea Modreanu, Salvador Bosch, and Michel Stchakovsky, Thin Solid Films, 516, 7990 (2008).
[4.15]G. D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).
[4.16]E. P. Gusev, E. Cartier, D.A. Buchanan, M. Gribelyuk, M. Copel H. Okorn-Schmidt, and C. D’Emic, Microelectron. Eng. 59, 341 (2001).
[4.17]X. Zhao and D. Vanderbilt, Phys. Rev. B, 65, 075105 (2002).
[4.18]K. B. Chung, G. Lucovsky, W. J. Lee, M.-H. Cho, and Hyeongtag Jeon, J. Appl. Phys. 94, 042907 (2009).
[4.19]M.-H. Cho, D. W. Moon, S. A. Park, Y. K. Kim, K. Jeong, S. K. Kang , D.-H. Ko, S. J. Doh, J. H. Lee, and N. I. Lee , J. Appl. Phys. 84, 25 (2004).
[4.20]Yusuke Oniki, Yoshitaka Iwazaki, Masahiko Hasumi, Tomo Ueno, and Koichi Kuroiwa, Japanese J. Appl. Phys. 48, 05DA01 (2009).
[4.21]Yu. Yu. Lebedinskii, A. Zenkevich, E. P. Gusev, and M. Gribelyuk, J. Appl. Phys. 86, 191904 (2005).
[4.22]J. Morais, L. Miotti, K. P. Bastos, S. R. Teixeira, I. J. R. Baumvol, A. L. P. Rotondaro, J. J. Chambers, M. R. Visokay, L. Colombo, and M. C. Martins Alves, J. Appl. Phys. 86, 212906 (2005).
[4.23]Kazuhiko Yamamoto, Shigenori Hayashi, and Masaaki Niwa, J. Appl. Phys. 83, 11 (2003).
[4.24]The latest version of this program can be found at <http://www.genplot.com>.
[4.25]L. Soriano, M. Abbate, J. C. Fuggle, M. A. Jimenez, J. M. Sanz, C. Mythen, and H. A. Padmore, Solid State Commun. 87, 699 (1993).
[4.26]M.-H. Cho, K. B. Chung, C. N. Whang, D.-H. Ko, J. H. Lee and N. I. Lee, J. Appl. Phys. 88, 202902 (2006).
[4.27]S. Kremmer, H. Wurmbauer, and C. Teichert, G. Tallarida, S. Spiga, C. Wiemer, and M. Fanciulli, J. Appl. Phys. 97, 074315 (2005).
[4.28]H. Takahashi, S. Toyoda, J. Okabayashi, H. Kumigashira, M. Oshima, Y. Sugita, G. L. Liu, Z. Liu, and K. Usuda, J. Appl. Phys. 87, 012903 (2005).
[4.29]S. Dhar, M. S. Ramachandra Rao, S. B. Ogale, Darshan C. Kundaliya, S. R. Shinde, T. Venkatesan, S. J. Welz , R. Erni, and N. D. Browning, J. Appl. Phys. 87, 241504 (2005).
[4.30]Ran Jiang and Zifeng Li, Semicond. Sci. Technol. 24, 065006 (2009).
[5.1]J. Wagner, C. H. Mann, M. Rattunde, and G. Weimann, Appl. Phys. A: Mater. Sci. Process. 78, 505 (2004).
[5.2]M. Yin, A. Krier, S. Krier, R. Jones, and P. Carrington, Proc. SPIE, 6399, 63990C (2006).
[5.3]I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).
[5.4]G. Tsai, D. L. Wang, and H. H. Lin, J. Appl. Phys. 104, 023535 (2008).
[5.5]N. Kobayshi, Y. Horikoshi, Jpn. J. Appl. Phys. 19, L641 (1980).
[5.6]B. Lane, D. Wu, A. Rybaltowski, H. Yi, J. Diaz, M. Razeghi, Appl. Phys. Lett. 70, 443 (1997).
[5.7]A. Joullie'' ,E. M. Skouri, M. Garcia, P. Grech, A. Wilk, P. Christol, and A. N. Baranov, Appl. Phys. Lett. 76, 2499 (2000).
[5.8]A. Krier, Y. Mao, IEE Proc.-Optoelectron. 144, 355 (1997).
[5.9]T. Fukui and Y. Horikoshi, Jpn. J. Appl. Phys. 20, 587 (1981).
[5.10]E. H. Reihlen, M. J. Jou, Z. M. Fang, and G. B. Stringfellow, J. Appl.Phys. 68, 4604 (1990).
[5.11]R. M. Biefeld, K. C. Baucom, S. R. Kurtz, and D. M. Follstaedt, J. Cryst.Growth, 133, 38 (1993).
[5.12]G. Tsai, D. L. Wang, C. E. Wu, C. J. Wu, Y. T. Lin, and H. H. Lin, J. Cryst.Growth 134, 301 (2007).
[5.13]A. L. Ankudinov, B. Ravel, J. J. Rehr, S. D. Conradson, Phys. Rev. B, 58, 7565 (1998).
[5.14]J. C. Woolley, B. A. Smith, Proc. phys. Soc. 72, 867 (1958).
[5.15]J. C. Woicik, J. A. Gupta, S. P. Watkins, and E. D. Crozier, Appl. Phys. Lett. 73, 9 (1998).
[5.16]O. Pagès, A. Chafi, D. Fristot, and A. V. Postnikov, Phys. Rev. B, 73, 165206 (2006).
[5.17]Alan H. Cowley, Richard A. Jones, Christine M. Nunn, and Donald L. Westmoreland, Chem. Mater. 2, 221 (1990).
[5.18]E. G. Zaitseva, S. V. Medvedev, and L. A. Aslanov, Zh. Strukt. Khim. 31, 1, 110 (1990).
[5.19]S. S. Kizhayev, N. V. Zotova, S. S. Molchanov, B. V. Pushnyi, and Yu. P. Yakovlev, J. Cryst. Growth, 248, 296 (2003).
[5.20]K. Alberi, J. Wu, W. Walukiewicz, K. M. Yu, O. D. Dubon, S. P. Watkins, C. X. Wang, X. Liu, Y.-J. Cho, and J. Furdyna, Phys. Rev. B, 75, 045203 (2007).
[5.21]S. A. Cripps, T. J. C. Hosea, A. Krier, V. Smirnov, P. J. Batty, Q. D. Zhuang, H. H. Lin, P. W. Liu, and G. Tsai, Appl. Phys. Lett. 90, 172106 (2007).
[6.1]S. Cornelius, M. Vinnichenko, N. Shevchenko, A. Rogozin, A. Kolitsch, W. Möller, Appl. Phys. Lett. 94, 042103 (2009).
[6.2]Ho Won Jang, Chang Min Jeon, Ki Hong Kim, Jong Kyu Kim, Sung-Bum Bae, Jung-Hee Lee, Jae Wu Choi, and Jong-Lam Lee, Appl. Phys. Lett. 81, 1249 (2002).
[6.3]K. B. Lee, P. J. Parbrook, T. Wang, F. Ranalli, T. Martin, R. S. Balmer, and D. J. Wallis, J. Appl. Phys. 101, 053513 (2007).
[6.4]T. Egawa, H. Ishikawa, M. Umeno, and T. Jimbo, Appl. Phys. Lett. 76, 121 (2000).
[6.5]M. T. Elm, T. Henning, P. J. Klar, B. Szyszka, Appl. Phys. Lett. 93, 232101 (2008).
[6.6]S. S. Hullavarad, N. V. Hullavarad, D. E. Pugel, S. Dhar, T. Venkatesan, R. D. Vispute, Optical Materials, 30, 993 (2008).
[6.7]S. Nakamura, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. Part 2 30, L1708 (1991).
[6.8]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, T. H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett. 72, 2014 (1998).
[6.9]T. Mukai, H. Narimatsu, and S. Nakamura, J. J. Appl. Phys. Part 2 37, L479 (1998).
[6.10]M. Khan, J. N. Kusnia, D. T. Olson, G. M. Van Hove, M. Blasingane, and L. F. Reitz, Appl. Phys. Lett. 60, 2917 (1992).
[6.11]D. Walker, X. Zhang, P. Kung, A. Saxler, S. Javadpour, J. Xu, and M. Razeghi, Appl. Phys. Lett. 68, 2100 (1996).
[6.12]K. Ito, K. Hiramatsu, H. Amano, and I. Akasaki, J. Cryst. Growth, 104, 533 (1989).
[6.13]S. J. Chung, M. Senthil Kumar, H. J. Lee, and E.-K. Suh, J. Appl. Phys. 95, 7, 3565 (2004).
[6.14]W. F. Yang, Z. G. Liu, D. L. Peng, F. Zhang, H. L. Huang, Y. N. Xie, Z. Y. Wu, Appl. Surface Science, 255, 5669 (2009).
[6.15]Andrew P. Grosvenor, Farshid Ramezanipour, Shahab Derakhshan, Christian Maunders, Gianluigi A. Botton and John E. Greedan, J. Mater. Chem. 19, 9213 (2009).
[6.16]Satoru Yoshioka, Fumiyasu Oba, Rong Huang, and Isao Tanaka, J. Appl. Phys. 103, 014309 (2008).
[6.17]X. Gu, M. A. Reshchikov, A. Teke, D. Johnstone, H. Morkoc, B. Nemeth, and J. Nause, Appl. Phys. Lett. 84, 2268 (2004).
[6.18]N. Yamauchi, T. Shirai, T. Yoshihara, Y. Hayasaki, T. Ueda, T. Matsushima, K. Wasa, I. Kanno, and H. Kotera, Appl. Phys. Lett. 94, 172903 (2009).
[6.19]V. Porokhonskyy, Li Jin, and D. Damjanovic, Appl. Phys. Lett. 94, 212906 (2009).
[6.20]M. W. Cole, W. D. Nothwang, C. Hubbard, E. Ngo, and M. Ervin, J. Appl. Phys. 93, 9218 (2003).
[6.21]D. Kim, Y. Choi, M. G. Allen, J. Stevenson Kenney, and D. Kiesling, IEEE Trans. Microwave Theory Tech. 50, 2903 (2002).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔