(54.236.58.220) 您好!臺灣時間:2021/03/08 08:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳信安
研究生(外文):Hsin-An Chen
論文名稱:以第一原理計算高分子/碳奈米混掺材料之介面電荷轉移行為
論文名稱(外文):Interfacial Charge Transfer of Polymer/Nanocarbon Hybrids by First Principles Calculation
指導教授:陳俊維陳俊維引用關係
指導教授(外文):Chun-Wei Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:104
中文關鍵詞:混掺系統電荷轉移行為能帶排列聚噻蕭特基能障
外文關鍵詞:hybrid systemcharge transfer behaviorband alignmentpolythiopheneSchottky barrier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,根據第一原理,採用CASTEP 程式碼計算並討論不同混掺系統的介面性質,尤其關注混掺系統的電荷轉移行為與能帶排列。在此,我們選定聚噻吩/奈米碳管、聚噻吩/石墨烯與金/石墨烯做為我們研究的對象。電子結構有經過幾何結構最佳化調整,並列出不同系統的束縛能與分子間距資訊。根據計算結果,我們提出了一些影響混掺系統電荷轉移行為與能帶排列的重要因素,提供實驗上設計元件的參考。對於金屬/半導體的混掺系統,我們有列出其蕭特基能障之值。

In this thesis, we employed the first-principle calculations to investigate the interface properties of several hybrid systems using CASTEP code. We focus on the charge transfer behavior and the band alignment of each system. The hybrid systems we used including polythiophene/carbon nanotube, polythiophene/graphene and gold/graphene systems. The electronic structures, such as the binding energy and the intermolecular distance, were investigated and full-optimized. We suggest some factors may influence the charge transfer behavior and the band alignment of different hybrid systems. According to these details, we give some advices on designing devices. The Schottky barrier heights of different metal/semiconductor hybrid systems were also calculated.

口試委員會審定書
致謝 i
摘要 iii
Abstract iv
Table of Contents v
Figures viii
Tables xi
Chapter 1 Introduction 1
Chapter 2 Theory 9
2.1 Origin 9
2.2 Overview of Density Functional Theory 9
2.3 Thomas-Fermi Model 11
2.4 Hohenberg-Kohn Theorem 11
2.5 Born-Oppenheimer Approximation 13
2.6 Kohn–Sham Equations 13
2.7 Local Density Approximation (LDA) and Generalized Gradient Approximation (GGA) 15
2.8 Self-Consistent Calculations 16
2.9 Cambridge Serial Total Energy Package (CASTEP) 17
2.10 Band Structure 18
2.11 Density of States (DOS) 19
2.12 Electron Density Difference 21
Chapter 3 Modeling and Calculation Method 25
3.1 Polythiophene and CNT 25
3.2 Maximum-Binding-Energy Method 28
3.3 Calculation Details 29
Chapter 4 P3ET/CNT Hybrid System 30
4.1 P3ET/Pristine CNT System 30
4.1.1 Modeling 30
4.1.2 Results and Discussions 31
4.1.3 Summary 33
4.2 P3ET/Surface-Modified CNT System 34
4.2.1 Modeling 34
4.2.2 Results and Discussions 35
4.2.3 Summary 44
4.3 P3ET/Acyl Chloride-Modified CNT System 45
4.3.1 Modeling 45
4.3.2 Results and Discussions 46
4.3.3 Summary 49
4.4 C60/ P3ET/Surface-Modified CNT System 50
4.4.1 Modeling 50
4.4.2 Results and Discussions 51
4.4.3 Summary 59
Chapter 5 P3ET/Graphene System 60
5.1 P3ET/Surfaced-Modified Graphene System 60
5.1.1 Modeling 60
5.1.2 Results and Discussions 62
5.1.3 Summary 64
5.2 P3ET/Doped Graphene System 65
5.2.1 Modeling 65
5.2.2 Results and Discussions 67
5.2.3 Summary 75
Chapter 6 Gold/Graphene System 77
6.1 Gold/Doped Graphene System 77
6.1.1 Modeling 77
6.1.2 Results and Discussions 79
6.1.3 Schottky Barrier Height 80
6.1.4 Summary 86
6.2 Gold/Graphane and Gold/Graphene Oxide System 88
6.2.1 Modeling 88
6.2.2 Results and Discussions 90
6.2.3 Schottky Barrier Height 92
6.2.4 Summary 97
Chapter 7 Conclusions 98
Reference 102

1. Becquerel, A.E., C. R. Acad. Sci., 1839. 9: p. 145.
2. Becquerel, A.E., C. R. Acad. Sci., 1839. 9: p. 561.
3. Fritts, C.E., A New Form of Selenium Cell. Am. J. Sci., 1883. 26: p. 465.
4. Fritts, C.E., On a New Form of Selenium Photocell. Proc. Am. Assoc. Adv. Sci., 1883. 33: p. 97.
5. Green, M.A., et al., Solar Cell Efficiency Tables (version 35). Progress in Photovoltaics: Research and Applications, 2010. 18(2): p. 144-150.
6. Tang, C.W., Two-layer Organic Photovoltaic Cell. Applied Physics Letters, 1986. 48(2): p. 183-185.
7. Yu, G., et al., Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science, 1995. 270(5243): p. 1789-1791.
8. Thomas, L.H., The Calculation of Atomic Fields. Proceedings of the Cambridge Philosophical Society, 1927. 23: p. 542-548.
9. Fermi, E., Un Metodo Statistico per la Determinazione di alcune Priorieta dell''Atome. Rend. Accad. Naz. Lincei, 1927. 6: p. 602-607.
10. Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review B, 1964. 136(3B): p. B864-&.
11. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. 1133-&.
12. Dirac, P.A.M., The Quantum Theory of the Electron. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character, 1928. 117(778): p. 610-624.
13. Born, M. and R. Oppenheimer, Quantum Theory of Molecules. Annalen Der Physik, 1927. 84(20): p. 0457-0484.
14. Perdew, J.P., et al., Prescription for the Design and Selection of Density Functional Approximations: More constraint Satisfaction with Fewer Fits. The Journal of Chemical Physics, 2005. 123(6): p. 062201.
15. Langreth, D.C. and J.P. Perdew, Theory of Nonuniform Electronic Systems .1. Analysis of the Gradient Approximation and a Generalization That Works. Physical Review B, 1980. 21(12): p. 5469-5493.
16. Langreth, D.C. and M.J. Mehl, Beyond the Local-Density Approximation in Calculations of Ground-State Electronic-Properties. Physical Review B, 1983. 28(4): p. 1809-1834.
17. Perdew, J.P. and W. Yue, Accurate and Simple Density Functional for the Electronic Exchange Energy - Generalized Gradient Approximation. Physical Review B, 1986. 33(12): p. 8800-8802.
18. Payne, M.C., et al., Iterative Minimization Techniques for Abinitio Total-Energy Calculations - Molecular-Dynamics and Conjugate Gradients. Reviews of Modern Physics, 1992. 64(4): p. 1045-1097.
19. Hellmann, H., A new approximation method in the problem of many electrons. Journal of Chemical Physics, 1935. 3(1): p. 61-61.
20. Hellmann, H. and W. Kassatotschkin, Metallic binding according to the combined approximation procedure. Journal of Chemical Physics, 1936. 4(5): p. 324-325.
21. Bloch, F., Uber die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift fur Physik A Hadrons and Nuclei, 1929. 52(7): p. 555-600.
22. Ceperley, D.M. and B.J. Alder, Ground-State of the Electron-Gas by a Stochastic Method. Physical Review Letters, 1980. 45(7): p. 566-569.
23. Perdew, J.P. and A. Zunger, Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems. Physical Review B, 1981. 23(10): p. 5048-5079.
24. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical Review Letters, 1996. 77(18): p. 3865-3868.
25. Hammer, B., L.B. Hansen, and J.K. Norskov, Improved Adsorption Energetics within Density-functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. Physical Review B, 1999. 59(11): p. 7413-7421.
26. Perdew, J.P., et al., Atoms, Molecules, Solids, and Surfaces - Applications of the Generalized Gradient Approximation for Exchange and Correlation. Physical Review B, 1992. 46(11): p. 6671-6687.
27. Wu, Z.G. and R.E. Cohen, More Accurate Generalized Gradient Approximation for Solids. Physical Review B, 2006. 73(23): p. -.
28. Perdew, J.P., et al., Restoring the Density-gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 2008. 100(13): p. -.
29. Clark, S.J., et al., First principles methods using CASTEP. Zeitschrift Fur Kristallographie, 2005. 220(5-6): p. 567-570.
30. Kanai, Y. and J.C. Grossman, Role of Semiconducting and Metallic Tubes in P3HT/carbon-nanotube Photovoltaic Heterojunctions: Density Functional Theory Calculations. Nano Letters, 2008. 8(3): p. 908-912.
31. Kanai, Y. and J.C. Grossman, Insights on Interfacial Charge Transfer across P3HT/fullerene Photovoltaic Heterojunction from Ab Initio Calculations. Nano Letters, 2007. 7(7): p. 1967-1972.
32. Giovannetti, G., et al., Doping Graphene with Metal Contacts. Physical Review Letters, 2008. 101(2): p. 026803.
33. Sofo, J.O., A.S. Chaudhari, and G.D. Barber, Graphane: A two-dimensional hydrocarbon. Physical Review B, 2007. 75(15): p. -.
34. Mkhoyan, K.A., et al., Atomic and Electronic Structure of Graphene-Oxide. Nano Letters, 2009. 9(3): p. 1058-1063.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔