(34.237.124.210) 您好!臺灣時間:2021/03/02 06:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳明松
研究生(外文):Ming-Sung Wu
論文名稱:酸改質及聚醯亞胺改質多壁奈米碳管/聚醚醯亞胺複合材料之製備、形態以及性質比較研究
論文名稱(外文):Comparision of Processing, morphology and properties for acid modified and polyimide modified multiwalled carbon nanotube/polyetherimide composite
指導教授:林金福林金福引用關係
指導教授(外文):King-Fu Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:138
中文關鍵詞:米碳管:聚醚醯亞胺:奈米複合材&米碳管:聚醚醯亞胺:奈米複合材&米碳管:聚醚醯亞胺:奈米複合材&米碳管:聚醚醯亞胺:奈米複合材&
外文關鍵詞:polyimide modified:multiwalled carbon nanotube:polyetherimide:nanocomposite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於奈米碳管具有許多優異之材料、機械、熱傳導及導電特性,近年來引起廣泛的研究與討論,使其成為吾人在選用提升複合材料性質時的絕佳候選填充物。而聚醯亞胺高分子(Polyimide)是一具有高熱穩定性且良好的機械性質的高分子,同時又容易合成等性質。藉由將聚醯亞胺高分子與具有優異性質的奈米碳管相混合,形成具有高分子功能性之奈米複合材料。
本研究將分三部分來探討,第一部份先比較多壁奈米碳管(MWNT)藉由混酸溶液(硫酸:硝酸=3:1)酸改質2、4、6、12小時和純硝酸溶液酸改質24小時後的差異性,同樣以超音波震盪使奈米管懸浮並將奈米碳管表面改質,利用強酸溶液的氧化作用使得奈米碳管表面改質成帶有羧酸基(-COOH)以及氫氧基(-OH)。將實驗室現有的聚醚醯亞胺高分子先溶於氯仿溶液中(10wt%),然後分別配置不同含量的PEI/CNT-PAA改質碳管加入均勻混合後,得到聚醚醯亞胺/酸改質碳管(PEI/CNT-COOH)複合材料。
第二部份再將間-苯二胺(m-PDA)單體接枝在純硝酸改質後的奈米碳管表面上,再利用原位聚合法(in-situ)加入(1) 4,4’-(4,4’-Isopropylidenediphenoxy) bis(phthalic anhydride) (BPADA)與1,3-Phenylenediamine (m-PDA)和(2) 3,3'',4,4''-Diphenylsulfonetetracarboxylic dianhydride與9,9-Bis(4-aminophenyl)fluorene合成聚醯亞胺前驅物聚醯胺酸(PAA),形成PAA改質碳管(CNT-PAA)。再將實驗室現有的聚醚醯亞胺高分子先溶於氯仿溶液中(10wt%),然後分別配置不同含量的PEI/CNT-PAA改質碳管加入均勻混合後,藉由階段性加熱閉環步驟得到聚醚醯亞胺/聚醚醯亞胺改質碳管(PEI/CNT-PEI)以及聚醚醯亞胺/聚醯亞胺改質碳管(PEI/CNT-PI)複合材料。最後第三部份則是比較兩種不同的改質方式在導電度、機械性質、以及熱穩定度間的比較整理與討論。
本研究中使用高解析電子能譜儀(XPS)來鑑定多壁奈米碳管的改質效果,熱重損失分析儀(TGA)、微差掃描熱量分析儀(DSC)、萬能試驗機(Universal Test Machine)分別測定材料的熱穩定性質、玻璃轉移溫度和機械性質,傅立葉轉換紅外光譜儀(FTIR)來鑑定其化學結構,掃描式電子顯微鏡(SEM)與高解析穿透式電子顯微鏡(HRTEM)來觀察材料的剖面型態與高分子接枝後的奈米碳管和基材之間的分散性,聚醚醯亞胺和聚醯亞胺改質後在碳管表面上的厚度與結構的改變,最後用四點探針來量測材料的電性。
在本實驗結果中,我們藉由聚醚醯亞胺或聚醯亞胺以化學接枝的方式將碳管表面改質的方式成功克服了高含量的多壁奈米碳管混掺於聚醚醯亞胺的問題。且其複合膜材與單純酸改質的碳管相比具有相當優異的性質,如高導電度、良好的機械性質、以及高熱穩定度。從TGA, HRTEM, FT-IR數據中我們可證明聚醯亞胺成功接枝於多壁奈米碳管上,且從FESEM中可看出碳管均勻分散於聚醚醯亞胺基材中且彼此間具有良好的介面附著力。隨著碳管量的增加,Td以及Tg分別提升了約13度和11度。拉伸應力也較純聚醚醯亞胺提升最高上升到了171%。最後,當碳管量添加至10wt%,導電度由於碳管在膜材當中形成網狀結構最高可提昇至六個數量級以上。


Multi-wall Carbon nanotubes (MWCNTs) have stimulated wide research activities in recent years because of the merits of their unique mechanical, thermal and electric properties. Polyimide also has good thermal stability, excellent mechanical property and good processability. It is conceivable that if we combined polyimide with MWCNTs, the resulting composite would possess both excellent properties.
This research will divide into three parts. In the first part, multi-wall carbon nanotubes(MWCNTs)were acid-teated by the mixed acids of sulfuric and nitric acids for 2, 4, 6, 12 hours and by nitric acid for 24 hours. After surface treatments, the surface of MWCNTs contains carboxylic and hydroxyl groups. Then various amounts of the acid-treated MWCNTs were added to polyetherimide in chloroform solution to fabricate the PEI/CNT-COOH composites.
In the second part, the acide-treated MWCNTs were reacted with 1,3-Phenylenediamine and then with oligo(amic acid) (PAA, precursor of polyimide) to obtain the PEI and PI modified MWCNTs, denoted as CNT-PEI and CNT-PI respectively. MWCNTs in different steps of modification were characterized by high resolution x-ray photoelectron spectrometer (XPS), fourier transform infrared spectrometer (FTIR), transmission electron microscopy (TEM) and high-resolution transmission electron microscope (HRTEM). By addition of CNT-PEI and CNT-PI in different amounts to polyetherimide in chloroform solution, a series of PEI/CNT-PEI and PEI/CNT-PI composites were fabricated after drying and thermal imidization treatments. In part three, we compared the properties for the acid-treated and polyimide-modified CNT/polyetherimide composite, such as electrical conductivity, mechanical properties, and thermal stability.
Their degradation behavior, glass transition temperature (Tg) and mechanical properties were investigated by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC) and universal test machine, respectively. The morphology of composites after fracture was investigated by scanning electronmicroscopy (SEM). The electrical conductivity was measured by conductance meter.
The experimental results indicated that the employment of CNT-PEI or CNT-PI have successfully overcome the obstacles to disperse the high content of MWCNTs in PEI. The resulting nanocomposites showed unique properties, such as high electrical conductivity, high mechanical properties, and high thermal stability. FESEM revealed the well dispersion of MWCNTs in PEI matrix. The presence of the MWCNTs has increased thermal decomposition temperature (Td) and glass transformation temperature (Tg) of PEI about 13◦C and 11◦C. The tensile strength of the nanocomposites films exhibited a remarkable increase of 171% as compared to the pure PEI. The electrical conductivity was also increased more than six orders than pure PEI films as the content of MWCNTs was increased to 10 wt%.


摘要......... i
ABSTRACT iii
目錄......... v
表目錄..... viii
圖目錄..... ix
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
第二章 文獻回顧 5
2-1 聚醯亞胺 5
2-1-1 聚醯亞胺的發展 5
2-1-2 聚醯亞胺的特性 6
2-1-3 聚醯亞胺的種類 8
2-1-3-1 縮合型聚醯亞胺 8
2-1-3-2 加成型聚醯亞胺 13
2-1-3-3 改質型聚醯亞胺 16
2-1-4 聚醯亞胺的應用 19
2-2 奈米碳管的發展簡介 20
2-2-1 奈米碳管發展歷史 20
2-2-2 奈米碳管的結構 22
2-2-3 奈米碳管的特徵結構與物性 24
2-2-4 奈米碳管的特性 26
2-2-5 奈米碳管的應用 27
2-2-6 奈米碳管的合成與製備 28
2-2-6-1 電弧放電法(arc discharge) 29
2-2-6-2 雷射蒸發法(laser ablation) 30
2-2-6-3 化學氣相沉積法(chemical vapor deposition) 31
2-2-7 現代科技的奈米碳管應用 34
2-2-7-1 強化複合材料 34
2-2-7-2 奈米級導線 35
2-2-7-3 場發射應用 36
2-2-7-4 場效電晶體 37
2-2-7-5 儲氫材料 38
2-2-7-6 顯微探針 39
2-3 奈米碳管/聚醯亞胺之發展及現況 41
第三章 實驗設備與步驟 44
3-1 實驗藥品 44
3-2 實驗儀器 46
3-3 實驗流程 48
3-4 實驗步驟 52
3-4-1 酸改質多壁奈米碳管(Acid-treatment of MWCNTs) 52
3-4-2 聚醚醯亞胺和混酸溶液改質多壁奈米碳管(PEI/CNT-COOH,3:1)及 純硝酸溶液改質多壁奈米碳管(PEI/CNT-COOH,HNO3)的薄膜製備 方式 53
3-4-3 間-苯二胺改質多壁奈米碳管(Modify MWCNTs-COOH by mPDA-treatment) 54
3-4-3 聚醚醯亞胺改質多壁奈米碳管(CNT-PEI)及聚醯亞胺改質多壁奈米 碳管(CNT-PI) 的製備方式 55
3-4-4 聚醚醯亞胺/聚醚醯亞胺改質奈米碳管(PEI/CNT-PEI)及聚醚醯亞胺/ 聚醯亞胺改質奈米碳管(PEI/CNT-PI)的薄膜製備方式 57
3-5 分析試片的製備 58
第四章 結果與討論 62
4-1 多壁奈米碳管(MWNTs)分析 62
4-1-1 高解析電子能譜儀(XPS) 62
4-1-2 型態分析(TEM SEM) 67
4-1-3 酸化碳管表面改質破壞分析(RAMAN) 77
4-2 醚醯亞胺/酸改質奈米碳管(PEI/CNT-COOH)複合材料性質分析與討論 80
4-2-1 熱重損失分析(TGA) 80
4-2-2 微差掃描卡計儀(DSC) 82
4-2-3 機械性質分析(DMA-Q800 & Instron 5543) 84
4-2-4 酸改質多壁奈米碳管混摻聚醚醯亞胺(PEI/CNT-COOH)之導電度分析 92
4-3 間-苯二胺改質多壁奈米碳管(CNT-mPDA)的性質探討 95
4-3-1 高解析電子能譜儀(XPS) 95
4-3-2 傅立葉轉換紅外線光譜分析儀(FT-IR) 96
4-4 聚醚醯亞胺改質多壁奈米碳管(CNT-PEI)及聚醯亞胺改質多壁奈米碳管(CNT-PI)性質分析 97
4-4-1 高解析電子能譜儀(XPS) 97
4-4-2 傅立葉轉換紅外線光譜分析儀(FT-IR) 98
4-4-3 CNT-PEI與CNT-PI的表面改質破壞分析(RAMAN) 99
4-4-4 高解析穿透式電子顯微鏡 (High-Resolution Transmission Electron Microscope, HRTEM) 100
4-4-5 熱重損失分析(TGA) 101
4-5 聚醚醯亞胺/聚醚醯亞胺改質奈米碳管(PEI/CNT-PEI)及聚醚醯亞胺/聚醯 亞胺改質奈米碳管(PEI/CNT-PI)的複合材料性質分析與討論 103
4-5-1 熱重損失分析(TGA) 104
4-5-2 微差掃描卡計儀(DSC) 106
4-5-3 動態機械性質分析(DMA-Q800) 108
4-5-4 機械性質(萬能拉力機-Instron 5543) 112
4-5-5 型態分析(SEM) 117
4-5-6 薄膜導電度(四點探針) 118
4-6 酸改質多壁奈米碳管與聚醯亞胺改質多壁奈米碳管所製備的複合膜材其 性質比較 121
4-6-1 熱性質比較(TGA,DSC,DMA) 121
4-6-2 機械性質比較(Instron 5543, DMA) 125
4-6-3 型態分析(SEM) 129
4-6-4 導電度比較(四點探針) 130
第五章 結論 131
第六章 參考文獻 133


[1] S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 354, p.56. (1991)
[2] N. Popov, Materials Science and Engineering R, 43, p.61. (2004)
[3] M. S. Fuhrer,J. Nygard, L. Shih, M. Forero, Y-G. Yoon, M. S. C Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, P. L. Mceuen, Science, 288, p.494. (2000)
[4] P.G. Collins, A. Zettl, H. Bando, A. Thess, R. E. Smalley, Science, 278, p.100. (1997)
[5] G. Dresselhaus, M.S. Dresslhaus, P. Eklund, Phys. World, 11, p.33. (1998)
[6] C.M. Yang, K. Kaneko, M. Yudasaka, S. Iijima, Physica B, 323, p.140. (2002)
[7] R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Physical Review B, 46, p.1804. (1992)
[8] R. Saito, M. Fujita, G. Dresselhaus, M. S. Desselhaus, Applied Phys. Lett., 60, p.2204. (1992)
[9] N. Hamada, S. Swads, A. Oshiyama, Physical Review Lett., 68, p.1579. (1992)
[10] C. Feit, C. Wilkins, Jr. Polymer Materials for Electronic Applications, ACS Symposium Series 184; American Chemical Society: Washington, DC. (1982)
[11] G. Feger, Khojasteh, M. M. McGrath, J. E. Polyimides: Materials, Chemistry and
Characterization, Elsevier: Amsterda. (1989)
[12] M. K. Gosh, K. L. Mittal, Eds., Polyimides: Fundamentals and Applications, Marcel Dekker: New York. (1996)
[13] K. L. Mittal, Ed., Polyimides: Plenum Pr ses, New York. (1984)
[14] 顏慶山,全芳香族聚醯亞胺的加工與應用,高分子工業,第77期,第73-79頁。(1998)
[15] P. M. Ajayan, Q. Z. Zhou, Top. Appl. Phys.. 2001, 80, 391.
[16] 丁孟賢,何天白,聚醯亞胺新型材料,科學出版社。(1998)
[17] 馬振基,聚醯亞胺樹脂之合成特性與應用,塑料資訊 1997, 12, 14.
[18] G. D. Khvne, J. Polym. Sci. A-1, 7, p.2757. (1967)
[19] Hans R. Kricheldorf, Handbook of Polymer Synthesis, Part B, Marcel Dekker, Inc. (1992)
[20] C. Journet, P. Bernier, Applied Physics A, 67, p.169. (1998)
[21] R. A. Dine-Hart, W. W. Wright,Preparation and fabrication of romatic Polyimides, J. Appl. Polymer Sci., 11, p.609-627. (1967)
[22] T. T. Serafini, P. Delving, G. R. Lightsey, J. Appl. Polym. Sci., 16, p.905. (1972)
[23] Tohru Takekoshi, Polyimides, Springger-Verlag. (1990)
[24] F. C. Whitmore, J. Am. Chem. Soc., 68, p.485. (1946)
[25] 大澤映二,化學(日),第25期,第854頁。(1970)
[26] H. W. Kroto, J.R. Heath, S. O. C. Brien, et al. Nature, 347, p.354. (1985)
[27] J. A. E. Gibosn, Nature, 359, p.369. (1992)
[28] P. G. Wiles, J. Abrahamsion,Carbon, 16, p.341. (1978)
[29] P. G. Wiles, J. Abrahamsion, B. I. Rhoades,Abstract in proceedings of 14th Biennial Conf. On Carbon(USA). (1979)
[30] S. Iijima, T. Ichihashi, Nature, 363, p.603-605. (1993)
[31] C. Journet, W. K. Master, P. Bernier, A. Loiseau, M. Lamy de la Chapelle, S. Lefrant, P. Deniard, R. Lee& J. E. Fischer, Nature, 388. (1997)
[32] T. W. Ebbesen, Ann. Rev. Mater. Sci., 24, p.235. (1994)
[33] Dresselhaus, M.S.; Dresselhaus, G.; Eklund, P.C. Fullerenes and Carbon Nanotubes, Academic, San Diego. (1996)
[34] M. S. Dresselhaus, J. Mater. Res., 13, p.2355. (1998)
[35] Li J, Papadopoulos C, Xu J. Nature. (1999)
[36] S Amelinckx et. al. Electron diffraction and microscopy of nanotubes﹐nm p.1475-1477.
[37] Kiang CH, Endo M, Ajayan PM, et al. Phys Rev Lett. (1998)
[38]成會明,奈米碳管,初版,五南出版社。(2004)
[39] J. W. Mintmire, B. I. Dunlap, C. T. White, Physical Review Letters, 68, p.631. (1992)
[40] S. J. Tan, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, C. Dekker, Nature, 386, p.474. (1997)
[41] S. Berber, Y. K. Kwon, D. Tomanek, Physical Review, 84, p.4613. (2000)
[42]李元堯,21世紀的尖端材料-奈米碳管,化工技術,第11卷第2期,第140-159頁。(2003)
[43] 黃建盛,科學焦點 物理 奈米碳管簡介。
[44] Y. Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow, S. Iijima, Chemical Physics Letters, 323, p.580. (2000)
[45] Y.Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow, S. Iijima, Diamond and Related Materials, 10, p.1185. (2001)
[46] Z. Shi, Y. Lian, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, L. Zhou, K.T. Yue, S. Zhang, Carbon, 37, p.1449. (1999)
[47] N. Popov, Materials Science and Engineering R, 43, p.61. (2004)
[48] C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M.L. Chapelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fischer, Letters to nature, 388, p.756. (1997)
[49] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R.E. Smalley, Science, 273, p.483. (1996)

[50] D. Laplaze, P. Bernier, W. K. Msaer, G. Flamant, T. Guillard, A. Loiseau, Carbon, 36, p.685. (1998)
[51] M. S Dresselhaus, G. Dresselhaus, Ph. Avouris, " Carbon Nanotubes Synthesis,
Structure, Properties,and Applications", 80 Topics in Applied Physics, p32.
[52] 馬廣仁,工業材料雜誌,第179期。(2001)
[53] 丁傑,化工資訊,第25期。(2000)
[54] 洪凱炫、陳柏豪,科學新知,第89期,第9頁。(2001)
[55]天下雜誌。(2001)
[56] 鄭凱文,利用鐵、鎳金屬片及次微米鐵點陣列成長具方向性奈米碳管,國立東華大學材料科學與工程研究所碩士論文,第8頁。(2002)
[57] S. J. Tans, A. R. M. Verschueren, C. Dekker, Nature, 393, p.49. (1998)
[58] Yi Lin, Apparao M. Rao, Bindu Sadanadan, Edward A. Kenik, Ya-Ping Sun, J. Phys. Chem. B, 106, p.1294. (2002)
[59] Ami Eitan, Kuiyang Jiang, Doug Dukes, Rodney Andrews, Linda S. Schader, Chem Mater, 15, p.3198. (2003)
[60] 化工產業技術知識網:http://www.chemtech.com.tw
[61] 麥富德,碳奈米管專利地圖及分析carbon nanotube eng麥富德等作,行政院國科會科資中心,台北。(2002)
[62] 黃建良、黃淑娟,奈米碳纖與奈米碳管合成技術簡介,化工,第50卷第2期,第18-25頁。(2003)
[63] J. H. Hafner, C. L. Cheung, C. M. Lieber, Jourmal of America Chemical Society, 121, 9750. (1991)
[64] Lee NS, Chung DS, Han IT, Kang JH, Choi YS, Kim HY, Park SH, Jin YW, Yi WK, Yun MJ, Jung JE, Lee CJ, You JH, Jo SH, Lee CG and Kim JM, Diamond and Related Materials, 10, p.265-270. (2001)
[65] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Klang, D. S. Bethune, M. J. Heben, Natuer, 386, p.377. (1997)
[66] C. C. Ahn, Y. Ye, B. V. Ratnakumar, C. Witham, R. C. Bowman, Jr., B. Fultz, Applied Physics Letters, 73, p.3378. (1998)
[67] M. Holzinger, A. Hirsch, P. Bernier, G. S. Duesberg, M. Burghard, Applied Physics A, 72, p.129.
[68] M. K. Ghosh, K. L. Mittal, ”Polyimide, Fundamentals and applications” 1-6,
Marcel Dekker Inc. (1996)
[69] G. M. Odegard, T. S. Gates, K. E. Wise, C. Park, E. J. Siochi, Composites Science and Technology, 63, p.1637-1646. (2003)
[70] O. Toshio, I. Yuichi, I. Takashi, Y. Rikio, Composites: part A, 35, p.67-74. (2004)
[71] C. Park et al., Chemical Physics Letters, 364, p.303-308. (2002)
[72] Z.Ounaies, C.Park, K.E.Wise, E.J.Siochi, J.S. Harrison, Composites Science and
Technology, 63, p.1637-1646. (2003)
[73] X. Jiang, Y. Bin, M. Matsuo, Polymer, 46, p.7418-7424. (2005)
[74] T. Ogasawara, Y. Ishida, T. Ishikawa, Composites Science Part A, 35, p.67-74. (2004)
[75] Bao-Ku Zhu, Shu-Hui Xie, Zhi-Kang Xu, Composites Science and Technology, 66, p.548-554. (2006)
[76] A. Yu, H. Hu, E. Bekyarova, Composites Science and Technology. (2005)
[77] J. G. Smith Jr, J. W. Connell, D. M. Delozier, Polymer, 45, p.825-836. (2004)
[78] Siu-Ming Yuen, Chen-Chi M. Ma, Yao-Yu Lin, Hsu-Chiang Kuan, Composites Science and Technology. (2007)


[79] Prabhpreet Singh, Jitendra Kumar, Francesca Maria Toma, Jesus Raya, Maurizio Prato, Bruno Fabre, Sandeep Verma, Alberto Bianco, Jourmal of America Chemical Society, 131, p.13555-13562. (2009)
[80] Assileva E V, Friedrich K, Epoxy/alumina nanoparticle composites. 1. Dynamic mechanical behavior, J. Appl. Polym. Sci. 89, p.3774–85. (2003)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔