(3.237.97.64) 您好!臺灣時間:2021/03/04 13:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭勅君
研究生(外文):Chih-Chun Kuo
論文名稱:應用時間相關密度泛函理論計算研究金奈米結構之吸收光譜
論文名稱(外文):Optical absorption spectra of Au nanostructures from time dependent density functional theory calculations
指導教授:郭光宇郭光宇引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:59
中文關鍵詞:吸收光譜奈米結構
外文關鍵詞:Augoldnanostructuresspectralinear chain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來大家關注在金奈米顆粒的研究由於金奈米顆粒有很高的吸收光效率,這個性質可以被應用在工程、能源科技以及生物科系上。舉例來說,金的奈米棒可以用來放在腫瘤細胞上面,接著用放射線去照射該腫瘤細胞,這個腫瘤細胞便可被摧毀。既然金的奈米結構的吸收效應是廣為人知且熱門的,於是我們便來探討這個性質以及如何使用結構來調變其吸收光譜。
我們使用時間相關的密度泛函理論來計算金奈米結構的吸收光譜。在本篇論文中,我們計算了三種金的奈米結構:第一種是金的線性原子鏈,第二種是金面心立方001 表面的平面結構,第三種是利用金面心立方結構堆疊出來的原子團。在本篇研究中我們討論了結構的形狀與結構的大小如何影響吸收光譜。此外,我們也討論了結構優化對於吸收光譜的影響。金的線性原子鏈是我們計算的結構中有最大吸收強度的結構,它的吸收峰僅有幾個較大的峰值,由以上2點可以判斷出金的線性原子鏈有集合電漿子的性質。

So many people paid close attention to Au nanoparticles in recent years because of their high optical absorption property. It can be applied in engineering, biotechnology, energy technology, etc. For example, gold nanorods can be put in breast tumor cells, then using irradiation to trigger it, the cells nally explode and be eliminated. Now that the optical absorption of Au nanostructures is so interesting, we would like to investigate properties of them.
The optical absorption spectra of Au nanostructures were calculated by using time evolution method which is based on time-dependent density functional theory. Here we present the spectra of three types of Au clusters; one is linear chain structures (Aun, n 9), another is planar structures from face-center cube (fcc) (001) plane, and the other is three-dimensional structures stacked by face-center crystal structure. In our study we discuss how cluster structure a ects absorption spectrum and the in uence of cluster size on absorption spectrum. Moreover, we also discuss the e ects of geometric optimization on absorption spectrum. The geometric shapes of these structures result in di erent absorption peaks and intensity. The linear chain clusters with three or more atoms can be regarded as collective plasmon because their absorption spectra have large absorption peaks and are dominated by those peaks.

1 Introduction 6
2 Theoretical Backgrounds and Computational Method 8
2.1 Hartree and Hartree-Folk Equations . . . . . . . . . . . . . . . . . . . . . 8
2.1.1 Hartree equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Deriving Hartree-Fock equations from Hartree equation . . . . . . 10
2.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 The Hohenberg-Kohn Theorem . . . . . . . . . . . . . . . . . . . 15
2.2.2 Extension to Ground State Energy Functional . . . . . . . . . . . 19
2.2.3 The Kohn-Sham Scheme and The Kohn-Sham equations . . . . . 22
2.3 Time-Dependent Density Functional Theory . . . . . . . . . . . . . . . . 26
2.3.1 The Runge-Gross Theorem . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Time-Dependent Kohn-Sham equations . . . . . . . . . . . . . . . 29
2.3.3 Time Evolution Method . . . . . . . . . . . . . . . . . . . . . . . 30
2.4 Computational Package - Octopus . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 Calculation details . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4.2 Propagator for the time dependent Kohn-Sham equations . . . . . 34
2.4.3 Delta kick - Calculating an Absorption Spectrum . . . . . . . . . 35
3 Calculations of Absorption Spectra of Au clusters 37
3.1 Bond length and vibration frequency of Au diatomic molecule . . . . . . 38
3.2 Atomic structures of Au Nanostructures . . . . . . . . . . . . . . . . . . 39
3.3 Absorption spectra of single Au atom and Au dimer . . . . . . . . . . . . 41
3.4 The effects of cluster size on absorption spectra . . . . . . . . . . . . . . 42
3.5 The effects of geometric shape on absorption spectra . . . . . . . . . . . 47
4 Influence of structure optimizations on absorption spectra 50
4.1 Stability of linear, planar, three-dimensional Au nanostructures . . . . . 51
4.2 Absorption spectra of the optimized Au nanostructures . . . . . . . . . . 51
5 Summary 55
Bibliography 57

[1] The article of nanotechweb website "http://nanotechweb.org/cws/article/tech/24738"
[2] U. Heiz and U. Landman, Nanocatalysis (Springer, New York, 2006).
[3] S. Palomba, L. Novotny, and R. E. Palmera, Opt. Commun. 281, 480 (2008); U.
Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin,
1995); J. Zheng, C. Zhang, and R. M. Dickson, Phys. Rev. Lett. 93, 077402 (2004).
[4] J. O. Joswig, L. O. Tunturivuori, and R. M. Nieminen, J. Chem. Phys. 128, 014707
(2008)
[5] A. Castro, M.A.L. Marques, and A. Rubio, J. Chem. Phys 121 3425-3433 (2004)
[6] M.A.L. Marques, A. Castro, G. F. Bertsch, and A. Rubio, Comp. Phys. Comm.
151 60 (2003)
[7] A. Castro, H. Appel, M. Oliveira, C. A. Rozzi, X. Andrade, F. Lorenzen, M.A.L.
Marques, E. K. U. Gross, and A. Rubio, Phys. Stat. Sol. (b) 243 2465 (2006)
[8] The manual of Octopus website "http://www.tddft.org/programs/octopus/"
[9] G. Kresse and J. Hafner, Phys. Rev. B 48,13115(1993).
[10] G. Kresse and J. Furthmlluer, Comp. Matter. Sci 6, 15(1996).
[11] R.M.Dreizler, E. K. U. Gross, "Density Functional Theory:An Approach to the
Quantum Many-Body Problem", (Springer-Verlag, Berlin, 1990).
[12] M. A. L. Marques, C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E. K. U. Gross,
(Eds.), "Lecture Notes in Physics: Time-Dependent Density Functional Theory",
(Springer-Verlag, Berlin, 2006).
[13] E. Runge, E. K. U. Gross , Phys. Rev. Lett. 52 (12): 997-1000 (1984).
[14] M. Born, J. R. Oppenheimer, Ann. der Physik 84, 457 (1927).
[15] M. P. Marder, "Condensed Matter Physics", chapter9, (John Wiley & Sons Inc. ,
New york, 2000).
[16] D. R. Hartree, Mathematical Proceedings of the Cambridge Philosophical Society,
24, 89 (1928).
[17] V. Folk, Zeitschrift fur Physik, 61, 126.
[18] P. C. Hohenberg, W. Kohn, Phys. Rev. 80, B864-B871 (1964).
[19] W. Ritz, Journal fur die Reine und Angewandte Mathematik, vol. 135, p1-p61
(1909).
[20] W. Kohn, L. J. Sham, Phys. Rev. 140, A1133-A1138 (1965).
[21] M. Fuchs, M. Sche er, Computer Physics Communications 119, 67-98 (1999).
[22] K. Yabana, G. F. Bertsch, International Journal of Quantum Chemistry, Vol. 75,
55-66 (1999).
[23] S. Wang, Phys. Rev. A, Vol. 60, 262-266 (1999).
[24] M. D. Morse, Chem. Rev. 86, 1049 (1986).
[25] C. W. Finley, J. Ferrante, surface and interface analysis, vol.24, 133-136 (1996).
[26] J. Andzelm, E. Radzio, D. R. Salahub: J. Chem. Phys. 83, 4573 (1985).
[27] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).
[28] C. Hartwigsen, S. Goedecker and J. Hutter, Phys. Rev. B 58, 3641 (1998).
[29] J. C. Ehrhardt and S. P. Davis, J. Opt. Soc. Am. 61, 1342 (1971).
[30] C. M. Brown and M. L. Ginter, J. Opt. Soc. Am. 68, 243 (1978).
[31] G. A. Bishea and M. D. Morse, J. Chem. Phys. 28, 5646 (1991).
[32] L. Xiao, L. Wang, Chemical Physics Letters 392 452-455 (2004).


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔