跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 18:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫尚右
研究生(外文):Shang-Yu Sun
論文名稱:南極超高能宇宙微中子陣列之事件重建模擬
論文名稱(外文):Simulation of the Event Reconstruction ofUltra High Energy Neutrino with Askaryan Radio Array
指導教授:陳丕燊陳丕燊引用關係
指導教授(外文):Pisin Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:天文物理研究所
學門:自然科學學門
學類:天文及太空科學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:73
中文關鍵詞:南極超高能宇宙微中子陣列超高能/GZK/宇宙微中子無線電波偵測超高能宇宙微中子微中子角度解析度事件重建之模擬超高能宇宙微中子之偏離角
外文關鍵詞:Askaryan Radio Array (ARA)UHE/GZK/cosmosgenic/cosmic neutrinosradio detection of UHE neutrinosUHE neutrino angular resolutionresolution of UHE neutrino incoming directionsimulation of event reconstructiondeviation angles of GZK neutrinos
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
南極超高能宇宙微中子陣列是一個已被提案的科學計畫,旨在藉由無線電波段之契忍可夫輻射偵測超高能宇宙微中子,以了解宇宙加速器之起源及演化。為評估藉由超高能宇宙微中子指回產生它們的宇宙加速器的可能性,我們採用偏離角來描述此可能性:在百分之一的信心水準下,有九成的宇宙超高能微中子在地球端的觀測偏離小於一度。而為了使南極超高能宇宙微中子陣列的幾何設計能最佳化,我們研究了幾何設計與微中子角度解析度和偵測效率關係,同時也考慮了不同程度的背景雜訊所帶來的影響。我們發現無線電站相距1.6 公里且天線相距40 公尺能讓陣列表現最佳。
Askaryan Radio Array (ARA) is a large-scale radio Cherenekov observatory which scientists propose to develop in Antarctica, aiming for discovering the origin and
evolution of the cosmic accelerators that produce the highest energy cosmic rays, by means of observing the ultra high energy (UHE) cosmogenic neutrinos. To determine
whether it is probable to use UHE neutrinos for pointing back to the cosmic accelerators, an assessment of the deviation angles of these neutrinos has been made,
and its conclusion is that the probability of observing the neutrino deviation angle within 1 degree is 90%. To optimize ARA''s angular resolution of the incoming UHE neutrinos, which is also essential to point pack, the relation between the reconstruction capabilities of ARA and its design is studied. It is found that with the noise
e ect taken into account, in order to make this neutrino angular resolution as good as possible and detection e ciency as high as possible, the optimal choice for ARA
geometry would be the station spacing of 1.6 km and the antenna spacing of 40 m.
1 Introduction 11
1.1 The Mystery of Cosmic Accelerators . . . . . . . . . . . . . . . . . . 11
1.2 Greisen-Zatsepin-Kuzmin(GZK) Cuto and GZK Process . . . . . . . 14
1.3 UHE Neutrino: Key to the Mystery of Cosmic Accelerators . . . . . . 16
1.4 Detection of UHE neutrinos . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 Radio Detection Experiments of UHE Neutrino: ARA Design Concepts 20
2 Deviation Angle of Cosmogenic Neutrino 23
2.1 A New Quantity to Measure the Deviation: max . . . . . . . . . . . . 23
2.2 Proton Energy Loss Length . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 Angular Diameter Distance . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 GZK Neutrino Flux from Proton Propagation . . . . . . . . . . . . . 30
2.5 Conclusion of the Assessment . . . . . . . . . . . . . . . . . . . . . . 32
3 Simulation Method 35
3.1 Setting Array Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Event Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4
3.3 Radio Cherenkov Wave from the shower location to Antennas . . . . 39
3.4 Determination of Arrival Time Di erence and Pulse Voltage . . . . . 42
3.5 Reconstruction of Neutrino Moving Directions . . . . . . . . . . . . . 43
4 Results 45
4.1 Resolutions of Arrival Time Di erence and Pulse Voltage . . . . . . . 45
4.2 Resolutions of Shower Location, RF Wave Direction, and Neutrino
Moving Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Optimization of ARA . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5 Summary 67
Bibliography 70
[1] I. A. Grenier and A. K. Harding, in Albert Einstein Century International Conference,
Vol. 861 of American Institute of Physics Conference Series (American
Institute of Physics, New York, 2006), pp. 630-637.
[2] Antonio Codino, "The transition from tortuous to rectilinear cosmic ray trajectories
in the Galaxy is at the origin of the knee and the ankle", 30th International
Cosmic Ray Conference, 2007
[3] E mov N N et al 1991 ICRR Symp. on Astrophysical Aspects of the Most Energetic
Cosmic Rays edMNagano and F Takahara (Singapore: World Scienti c)
[4] D.P. Torres and L.A. Anchordoqui, Rep. Prog. Phys., 67, 1663-1730 (2004).
[5] P. Bhattacharjee and G. Sigl, Phys.Rept. 327, 109, (2000).
[6] D. Seckel and T. Stanev, Phys. Rev. Lett 95, 141101(2005)
[7] K. Greisen, End to the cosmic ray spectrum?, Phys. Rev. Lett. 16, 748 (1966).
[8] G. T. Zatsepin and V. A. Kuzmin, Upper limit of the spectrum of cosmic rays,
JETP Lett. 4, 78 (1966).
[9] V. S. Berezinsky and G. T. Zatsepin, Cosmic neutrinos of superhigh energy,
Yad. Fiz. 11, 200 (1970).
[10] F. W. Stecker, Ultrahigh energy photons, electrons and neutrinos, the microwave
background, and the universal cosmic ray hypothesis, Astrophys. Space
Sci. 20, 47 (1973).
[11] O. E. Kalashev, V. A. Kuzmin, D. V. Semikoz and G. Sigl,"Ultra-high energy
neutrino uxes and their constraints," Phys. Rev. D 66, 063004 (2002).
[12] R. J. Protheroe, and P. A. Johnson, Astropart. Phys. 4, 253 (1996).
[13] M. Roth, for the Auger Collaboration, "Measurement of the UHECR energy
spectrum using data from the Surface Detector of the Pierre Auger Observatory,"
Contribution to the 30th International Cosmic Ray Conference, Merida,
Mexico, http : ==arxiv:org=abs=0706:2096, 2007.
[14] A.V.Glushkov et al., Astropart. Phys. 4 (1995) 15.
[15] D.J.Bird et al., Astrophys. J. 441 (1995) 144. J.W.Elbert, P.Sommers, Astrophys.
J. 441 (1995) 151; Baltrusaitas, R.M., Cassiday, G.L., Elbert, J.W., et
al., Phys. Rev. D 31, 2192 (1985).
[16] S.Yoshida et al., Astropart. Phys. 3 (1995) 105; also Shigeru Yoshida, Hongyue
Dai, (astro 􀀀 ph=9802294). Journal of Physics G 24 (1998) 905.
[17] R. U. Abbasi, et al., The HiRes Collaboration, (2007) submitted to Phys. Rev.
Lett., astro 􀀀 ph=0703099.
[18] M.A. Lawrence, R.J.O. Reid, A.A. Watson. J. Phys. G. 17 (1991) 733.
[19] Antarctic Impulsive Transient Antenna collaboration
[20] P. Gorham, 1st InternationalWorkshop on the Saltdome Shower Array (SalSA),
SLAC, Feb 2005
[21] G.A. Askaryan, JETP 14, 441 (1962).
[22] P.W. Gorham et al. ANITA Collaboration, Phys. Rev. Lett. 99, 171101 (2007)
[23] P. Chen and K.D. Ho man, arXv:0902.3288 [astro-ph] (2009).
[24] Askaryan Radio Array Proposal, submitted to US NSF (2009).
[25] A. Taylor and A. D. Castro and E. Castillo-Ruiz, arXiv:0902.3012v1
[26] T. Stanev, arXiv:0810.2501v1
[27] F. W. Stecker, Phys. Rev. Lett. 21, 1016 - 1018 (1968)
[28] Particle Data Group, http : ==pdgusers:lbl:gov=sbl=gammaptotal:dat
[29] V.S. Bereezinsky and S.I.Grigo''eva, Astro. Astrophys. 199, 1-12(1988)
[30] R. Engel, D. Seckel and T. Stanev, Phys. Rev. D, 64, 093010
[31] A. Mu½Lcke et al., Comput. Phys. Commun. 124, 290 (2000)
[32] E. Waxman, Astrophys. J. Lett. 452, L1 (1995)
[33] P.W. Gorham et al., Astropar. Phys.32, 10-41 (2009)
[34] F. Wu, J. Nam, Proceedings of the 30th International Cosmic Ray Conference
(2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top