(3.239.33.139) 您好!臺灣時間:2021/03/08 17:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃丹妮
研究生(外文):Tan-Ni Huang
論文名稱:探討川陳皮素在酵母菌中對紫外線照射引起DNA受損反應的影響
論文名稱(外文):The effect of nobiletin on UV-induced DNA damage responses in yeast
指導教授:羅翊禎
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:110
中文關鍵詞:川陳皮素UVBrH2ARad53
外文關鍵詞:NobiletinUVBrH2ARad53
相關次數:
  • 被引用被引用:2
  • 點閱點閱:301
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
川陳皮素(Nobiletin)為柑橘類果皮中含多甲基的酚類物質,目前已知其具有廣泛的生理活性,包括抗發炎及抗癌等。先前有研究指出由於川陳皮素的外圍含多個甲基,因此與一般常見富含氫氧基的酚類物質在生物體中的吸收與代謝途徑有所不同。此外,研究也證實川陳皮素經過生物體內代謝,會將其環上特定位置的甲基由氫氧基置換,產生去除單甲基或雙甲基的代謝物,而此置換的物質可能存在於生物體中作為某些功能使用。根據先前的研究顯示富含甲基的飲食,例如葉酸,可調節生物體中DNA或組蛋白的甲基化程度,而此種甲基化的調節可影響DNA受損後的修復途徑。因此,我們主要探討川陳皮素在UVB照射後的酵母菌中,對酵母菌DNA受損反應的影響。結果發現川陳皮素的添加會增加DNA受損指標γH2A的表現量,也會增加細胞週期檢查點蛋白Rad53的活化。而在細胞週期方面,川陳皮素的添加會使得細胞週期停滯在S期。組蛋白甲基化方面,川陳皮素的添加反而降低了H3K79三甲基化、對H3K4三甲基化無顯著影響並增加了H3K9乙醯化的程度。而在細胞內自由基表現量方面則沒有顯著差異。根據我們的研究,川陳皮素的添加會藉由增加γH2A的表現量進而活化檢查點蛋白Rad53,並使酵母菌停留在細胞週期的S期,使受損細胞DNA修復,最後達到增加酵母菌存活率的影響。

Nobiletin is a dietary phytochemical belonging to polymethoxy flavonoids from the peels of citrus fruits. It has a distinct metabolic feature compared to polyhydroxyflavonoids due to its high bioavailability. Nobiletin is shown to have health beneficial properties, including anti-inflammatory and anti-carcinogenic activities. We investigate how nobiletin affects DNA damage response after UVB treatment in unicellular model organism, baker’s yeast. The results show that nobiletin increases cell survival after UVB damage. UVB treatment induces histone H2A phosphorylation, a marker for DNA damage. The addition of nobiletin can increase both the phosphorylation levels of H2A and phosphotylation levels of Rad53, which is a DNA damage checkpoint protein, after UVB treatment. In the aspects of histone modification, nobiletin has no significant effect on H3K4 trimethylation and it reduces H3K79 trimethylation. Besides, nobiletin increases H3K9 acetylation, which represented that nobiletin promote cell arrest in cell cycle S phase. Furthermore, the addition of nobiletin also has no significant effect on reactive oxygen species (ROS) production after UVB treatment. Our results suggest nobiletin treatment increases the sensitivity of yeast cell to UV damage, promote cell cycle arrest and may facilitate cells to recruit repair proteins to DNA damage sites, thus, influence cell survival.

謝誌 .............................................................................................................................. i
摘要 ............................................................................................................................ iii
Abstract ...................................................................................................................... iv
目錄 ............................................................................................................................. v
圖目錄 ...................................................................................................................... viii
表目錄 ......................................................................................................................... x
第一章、 前言........................................................................................................ 1
第二章、 文獻整理................................................................................................ 2
第一節 多甲基的酚類物質--川陳皮素Nobiletin ......................................... 2
第二節 酵母菌 Saccharomyces cerevisiae、budding yeast為一探討真核生物的實驗模式........................................................................................................ 6
一、 酵母菌與哺乳動物在細胞週期調控蛋白上的相似性................ 7
二、 酵母菌用以探討部分癌症發生可能的調控機制........................ 8
三、 酵母菌用於神經疾病發生之研究................................................ 9
第三節 紫外線照射所引起生物體受損反應.............................................. 11
第四節 DNA修復方式 ................................................................................. 13
一、 非同源黏合系統 (Non-homologous end joining, NHEJ) .......... 13
二、 同源重組修復系統(Homologous recombination, HR)............... 14
三、 鹼基切除修復 (Base-excision repair, BER) .............................. 16
四、 核苷酸切除修復系統 (Nucleotide-excision repair, NER) ........ 16
五、 錯誤配對修復 (Mismatch repair, MMR) ................................... 16
六、 複製後修復 (Postreplication repair, PRR) ................................. 16
七、 股內連結修復 (Interstrand crosslink repair) .............................. 17
第五節 組蛋白修飾作用與調控DNA修復有關 ........................................ 18
一、 磷酸化 (phosphorylation): ....................................................... 21
二、 乙醯化 (acetylation): ............................................................... 22
vi
三、 類泛素化 (Ubiquitination).......................................................... 23
四、 甲基化 (Methylation) ................................................................. 24
第六節 酵母菌細胞週期yeast cell cycle的進程及調控蛋白細胞週期素 29
第七節 細胞週期檢查點蛋白的功能及調控DNA修復的機制細胞週期檢查點蛋白Rad53 .................................................................................................. 34
第三章、 材料方法.............................................................................................. 38
第一節 實驗方法與材料.............................................................................. 38
一、 酵母種類...................................................................................... 38
二、 培養方式...................................................................................... 38
三、 細胞生長曲線.............................................................................. 39
四、 西方點墨法.................................................................................. 39
五、 細胞週期...................................................................................... 46
六、 自由基測試.................................................................................. 47
第二節 實驗儀器.......................................................................................... 48
第三節 實驗架構.......................................................................................... 49
第四章、 結果與討論.......................................................................................... 50
第一節 川陳皮素可增加酵母菌經紫外線照射後的細胞存活率.............. 50
第二節 川陳皮素不影響酵母菌的正常生長.............................................. 52
第三節 紫外線處理後γH2A表現量的影響 .............................................. 53
一、 紫外線UVC照射增加γH2A的表現量 .................................. 53
二、 不同紫外線的照射對γH2A產生量的影響。 ......................... 55
三、 川陳皮素影響γH2A的表現量 ................................................. 57
四、 川陳皮素增加DNA損害訊號gammaH2A的表現量 ............... 59
第四節 川陳皮素對紫外線照射後的反應氧屬產生量無顯著影響.......... 63
第五節 川陳皮素對H3K4三甲基化程度沒有顯著影響 ........................... 65
第六節 川陳皮素降低H3K79三甲基化的表現程度 ................................. 68
第七節 川陳皮素增加細胞週期檢查點蛋白Rad53的磷酸化程度 ......... 71
第八節 川陳皮素促使正常細胞在紫外線照射後停滯在細胞週期S期 .. 74
第九節 川陳皮素增加正常細胞在紫外線照射後H3K9乙醯化程度 ....... 77
第五章、 參考文獻.............................................................................................. 83
vii
附件一、補充資料…………………………………………………………………………………………94
附件二、paper (draft)……….………..………………………………………………………………..96

Adkins, M.W., Carson, J.J., English, C.M., Ramey, C.J., and Tyler, J.K. (2007). The histone chaperone anti-silencing function 1 stimulates the acetylation of newly synthesized histone H3 in S-phase. J Biol Chem 282, 1334-1340.
Afaq, F., and Mukhtar, H. (2002). Photochemoprevention by botanical antioxidants. Skin Pharmacol Appl Skin Physiol 15, 297-306.
Akira Murakamia, K.K., Hajime Ohigashia, Shigeru Kuwaharac, Wataru Kukic, Yasuo Takahashic, Keisuke Hosotanid, Satsuki Kawaharab and Yumi Matsuokab (2002). Characteristic rat tissue accumulation of nobiletin, a chemopreventive polymethoxyflavonoid, in comparison with luteolin. BioFactors.
Alcasabas, A.A., Osborn, A.J., Bachant, J., Hu, F., Werler, P.J., Bousset, K., Furuya, K., Diffley, J.F., Carr, A.M., and Elledge, S.J. (2001). Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat Cell Biol 3, 958-965.
Altaf, M., Utley, R.T., Lacoste, N., Tan, S., Briggs, S.D., and Cote, J. (2007). Interplay of chromatin modifiers on a short basic patch of histone H4 tail defines the boundary of telomeric heterochromatin. Mol Cell 28, 1002-1014.
Ananthaswamy, H.N., and Pierceall, W.E. (1990). Molecular Mechanisms of Ultraviolet-Radiation Carcinogenesis. Photochemistry and Photobiology 52, 1119-1136.
Baarends, W.M., Wassenaar, E., Hoogerbrugge, J.W., Schoenmakers, S., Sun, Z.W., and Grootegoed, J.A. (2007). Increased phosphorylation and dimethylation of XY body histones in the Hr6b-knockout mouse is associated with derepression of the X chromosome. J Cell Sci 120, 1841-1851.
Babcock, M., de Silva, D., Oaks, R., Davis-Kaplan, S., Jiralerspong, S., Montermini, L., Pandolfo, M., and Kaplan, J. (1997). Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276, 1709-1712.
Barski, A., Cuddapah, S., Cui, K., Roh, T.Y., Schones, D.E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007). High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837.
Bartkova, J., Horejsi, Z., Koed, K., Kramer, A., Tort, F., Zieger, K., Guldberg, P., Sehested, M., Nesland, J.M., Lukas, C., et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864-870.
84
Bashkirov, V.I., Bashkirova, E.V., Haghnazari, E., and Heyer, W.D. (2003). Direct kinase-to-kinase signaling mediated by the FHA phosphoprotein recognition domain of the Dun1 DNA damage checkpoint kinase. Mol Cell Biol 23, 1441-1452.
Benevolenskaya, E.V. (2007). Histone H3K4 demethylases are essential in development and differentiation. Biochem Cell Biol 85, 435-443.
Bergink, S., and Jentsch, S. (2009). Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458, 461-467.
Bird, A.W., Yu, D.Y., Pray-Grant, M.G., Qiu, Q., Harmon, K.E., Megee, P.C., Grant, P.A., Smith, M.M., and Christman, M.F. (2002). Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419, 411-415.
Bloom, J., and Cross, F.R. (2007). Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8, 149-160.
Bowden, G.T. (2004). Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nat Rev Cancer 4, 23-35.
Branzei, D., and Foiani, M. (2005). The DNA damage response during DNA replication. Curr Opin Cell Biol 17, 568-575.
Brash, D.E., Rudolph, J.A., Simon, J.A., Lin, A., Mckenna, G.J., Baden, H.P., Halperin, A.J., and Ponten, J. (1991). A Role for Sunlight in Skin-Cancer - Uv-Induced P53 Mutations in Squamous-Cell Carcinoma. P Natl Acad Sci USA 88, 10124-10128.
Briggs, S.D., Xiao, T., Sun, Z.W., Caldwell, J.A., Shabanowitz, J., Hunt, D.F., Allis, C.D., and Strahl, B.D. (2002). Gene silencing: trans-histone regulatory pathway in chromatin. Nature 418, 498.
Bruijn, L.I., Houseweart, M.K., Kato, S., Anderson, K.L., Anderson, S.D., Ohama, E., Reaume, A.G., Scott, R.W., and Cleveland, D.W. (1998). Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281, 1851-1854.
Buhler, M., and Moazed, D. (2007). Transcription and RNAi in heterochromatic gene silencing. Nat Struct Mol Biol 14, 1041-1048.
Callegari, A.J., Clark, E., Pneuman, A., and Kelly, T.J. (2010). Postreplication gaps at UV lesions are signals for checkpoint activation. Proc Natl Acad Sci U S A 107, 8219-8224.
Chambers, A.L., and Downs, J.A. (2007). The contribution of the budding yeast histone H2A C-terminal tail to DNA-damage responses. Biochem Soc Trans 35, 1519-1524.
Chen, W., Tang, Q., Gonzales, M.S., and Bowden, G.T. (2001). Role of p38 MAP kinases and ERK in mediating ultraviolet-B induced cyclooxygenase-2 gene expression in human keratinocytes. Oncogene 20, 3921-3926.
85
Choy, J.S., and Kron, S.J. (2002). NuA4 subunit Yng2 function in intra-S-phase DNA damage response. Mol Cell Biol 22, 8215-8225.
Costanzo, M.C., Hogan, J.D., Cusick, M.E., Davis, B.P., Fancher, A.M., Hodges, P.E., Kondu, P., Lengieza, C., Lew-Smith, J.E., Lingner, C., et al. (2000). The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res 28, 73-76.
Dehe, P.M., Pamblanco, M., Luciano, P., Lebrun, R., Moinier, D., Sendra, R., Verreault, A., Tordera, V., and Geli, V. (2005). Histone H3 lysine 4 mono-methylation does not require ubiquitination of histone H2B. J Mol Biol 353, 477-484.
DiGiovanni, J. (1992). Multistage carcinogenesis in mouse skin. Pharmacol Ther 54, 63-128.
Domann, F.E., Jr., Levy, J.P., Finch, J.S., and Bowden, G.T. (1994). Constitutive AP-1 DNA binding and transactivating ability of malignant but not benign mouse epidermal cells. Mol Carcinog 9, 61-66.
Downs, J.A., Allard, S., Jobin-Robitaille, O., Javaheri, A., Auger, A., Bouchard, N., Kron, S.J., Jackson, S.P., and Cote, J. (2004). Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16, 979-990.
Downs, J.A., and Cote, J. (2005). Dynamics of chromatin during the repair of DNA double-strand breaks. Cell Cycle 4, 1373-1376.
Downs, J.A., and Jackson, S.P. (2003). Cancer: protective packaging for DNA. Nature 424, 732-734.
Downs, J.A., Lowndes, N.F., and Jackson, S.P. (2000). A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408, 1001-1004.
Durocher, D., Henckel, J., Fersht, A.R., and Jackson, S.P. (1999). The FHA domain is a modular phosphopeptide recognition motif. Mol Cell 4, 387-394.
Elledge, S.J. (1996). Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664-1672.
Feng, Q., Wang, H., Ng, H.H., Erdjument-Bromage, H., Tempst, P., Struhl, K., and Zhang, Y. (2002). Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12, 1052-1058.
Fridovich-Keil, J.L. (2005). Yeast as a model for human diseases. Encyclopedia Of Life Sciences.
Friedel, A.M., Pike, B.L., and Gasser, S.M. (2009). ATR/Mec1: coordinating fork stability and repair. Curr Opin Cell Biol 21, 237-244.
Furuta, T., Takemura, H., Liao, Z.Y., Aune, G.J., Redon, C., Sedelnikova, O.A., Pilch, D.R., Rogakou, E.P., Celeste, A., Chen, H.T., et al. (2003). Phosphorylation of
86
histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes. J Biol Chem 278, 20303-20312.
Gardner, R., Putnam, C.W., and Weinert, T. (1999). RAD53, DUN1 and PDS1 define two parallel G2/M checkpoint pathways in budding yeast. Embo J 18, 3173-3185.
Giannattasio, M., Lazzaro, F., Plevani, P., and Muzi-Falconi, M. (2005). The DNA damage checkpoint response requires histone H2B ubiquitination by Rad6-Bre1 and H3 methylation by Dot1. J Biol Chem 280, 9879-9886.
Gilbert, C.S., Green, C.M., and Lowndes, N.F. (2001). Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol Cell 8, 129-136.
Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M., et al. (1996). Life with 6000 genes. Science 274, 546, 563-547.
Grewal, S.I., and Moazed, D. (2003). Heterochromatin and epigenetic control of gene expression. Science 301, 798-802.
Gunjan, A., and Verreault, A. (2003). A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Cell 115, 537-549.
Halazonetis, T.D., Gorgoulis, V.G., and Bartek, J. (2008). An oncogene-induced DNA damage model for cancer development. Science 319, 1352-1355.
Hirano, T., Abe, K., Gotoh, M., and Oka, K. (1995). Citrus flavone tangeretin inhibits leukaemic HL-60 cell growth partially through induction of apoptosis with less cytotoxicity on normal lymphocytes. Br J Cancer 72, 1380-1388.
Hochstrasser, M. (1996). Ubiquitin-dependent protein degradation. Annu Rev Genet 30, 405-439.
Hughes, C.M., Rozenblatt-Rosen, O., Milne, T.A., Copeland, T.D., Levine, S.S., Lee, J.C., Hayes, D.N., Shanmugam, K.S., Bhattacharjee, A., Biondi, C.A., et al. (2004). Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 13, 587-597.
Humpal, S.E., Robinson, D.A., and Krebs, J.E. (2009). Marks to stop the clock: histone modifications and checkpoint regulation in the DNA damage response. Biochem Cell Biol 87, 243-253.
Hwang, W.W., Venkatasubrahmanyam, S., Ianculescu, A.G., Tong, A., Boone, C., and Madhani, H.D. (2003). A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell 11, 261-266.
Ikura, T., Ogryzko, V.V., Grigoriev, M., Groisman, R., Wang, J., Horikoshi, M., Scully, R., Qin, J., and Nakatani, Y. (2000). Involvement of the TIP60 histone acetylase
87
complex in DNA repair and apoptosis. Cell 102, 463-473.
Im, H., Park, C., Feng, Q., Johnson, K.D., Kiekhaefer, C.M., Choi, K., Zhang, Y., and Bresnick, E.H. (2003). Dynamic regulation of histone H3 methylated at lysine 79 within a tissue-specific chromatin domain. J Biol Chem 278, 18346-18352.
Ishiwa, J., Sato, T., Mimaki, Y., Sashida, Y., Yano, M., and Ito, A. (2000). A citrus flavonoid, nobiletin, suppresses production and gene expression of matrix metalloproteinase 9/gelatinase B in rabbit synovial fibroblasts. J Rheumatol 27, 20-25.
Jazayeri, A., McAinsh, A.D., and Jackson, S.P. (2004). Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair. Proc Natl Acad Sci U S A 101, 1644-1649.
Jeong, J.B., Ju, S.Y., Park, J.H., Lee, J.R., Yun, K.W., Kwon, S.T., Lim, J.H., Chung, G.Y., and Jeong, H.J. (2009). Antioxidant activity in essential oils of Cnidium officinale makino and Ligusticum chuanxiong Hort and their inhibitory effects on DNA damage and apoptosis induced by ultraviolet B in mammalian cell. Cancer Epidemiol 33, 41-46.
Kabuyama, Y., Hamaya, M., and Homma, Y. (1998). Wavelength specific activation of PI 3-kinase by UVB irradiation. FEBS Lett 441, 297-301.
Kandaswami, C., Perkins, E., Drzewiecki, G., Soloniuk, D.S., and Middleton, E., Jr. (1992). Differential inhibition of proliferation of human squamous cell carcinoma, gliosarcoma and embryonic fibroblast-like lung cells in culture by plant flavonoids. Anticancer Drugs 3, 525-530.
Kandaswami, C., Perkins, E., Soloniuk, D.S., Drzewiecki, G., and Middleton, E., Jr. (1991). Antiproliferative effects of citrus flavonoids on a human squamous cell carcinoma in vitro. Cancer Lett 56, 147-152.
Kawaii, S., Tomono, Y., Katase, E., Ogawa, K., and Yano, M. (1999). Antiproliferative activity of flavonoids on several cancer cell lines. Biosci Biotechnol Biochem 63, 896-899.
Kim, J., Hake, S.B., and Roeder, R.G. (2005). The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. Mol Cell 20, 759-770.
Koch, C.M., Andrews, R.M., Flicek, P., Dillon, S.C., Karaoz, U., Clelland, G.K., Wilcox, S., Beare, D.M., Fowler, J.C., Couttet, P., et al. (2007). The landscape of histone modifications across 1% of the human genome in five human cell lines. Genome Res 17, 691-707.
Kuo, M.H., Brownell, J.E., Sobel, R.E., Ranalli, T.A., Cook, R.G., Edmondson, D.G., Roth, S.Y., and Allis, C.D. (1996). Transcription-linked acetylation by Gcn5p of histones H3 and H4 at specific lysines. Nature 383, 269-272.
88
Lacoste, N., Utley, R.T., Hunter, J.M., Poirier, G.G., and Cote, J. (2002). Disruptor of telomeric silencing-1 is a chromatin-specific histone H3 methyltransferase. J Biol Chem 277, 30421-30424.
Lai, C.S., Li, S., Chai, C.Y., Lo, C.Y., Dushenkov, S., Ho, C.T., Pan, M.H., and Wang, Y.J. (2008). Anti-inflammatory and antitumor promotional effects of a novel urinary metabolite, 3'',4''-didemethylnobiletin, derived from nobiletin. Carcinogenesis 29, 2415-2424.
Li, F., Long, T., Lu, Y., Ouyang, Q., and Tang, C. (2004). The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci U S A 101, 4781-4786.
Li, S., Sang, S., Pan, M.H., Lai, C.S., Lo, C.Y., Yang, C.S., and Ho, C.T. (2007). Anti-inflammatory property of the urinary metabolites of nobiletin in mouse. Bioorg Med Chem Lett 17, 5177-5181.
Lillycrop, K.A., Phillips, E.S., Jackson, A.A., Hanson, M.A., and Burdge, G.C. (2005). Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr 135, 1382-1386.
Lobrich, M., Shibata, A., Beucher, A., Fisher, A., Ensminger, M., Goodarzi, A.A., Barton, O., and Jeggo, P.A. (2010). gammaH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 9, 662-669.
Loizou, J.I., Murr, R., Finkbeiner, M.G., Sawan, C., Wang, Z.Q., and Herceg, Z. (2006). Epigenetic information in chromatin: the code of entry for DNA repair. Cell Cycle 5, 696-701.
Lowndes, N.F., and Murguia, J.R. (2000). Sensing and responding to DNA damage. Curr Opin Genet Dev 10, 17-25.
Lu, X., Simon, M.D., Chodaparambil, J.V., Hansen, J.C., Shokat, K.M., and Luger, K. (2008). The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol 15, 1122-1124.
Mankouri, H.W., and Hickson, I.D. (2004). Understanding the roles of RecQ helicases in the maintenance of genome integrity and suppression of tumorigenesis. Biochem Soc Trans 32, 957-958.
Marks, P., Rifkind, R.A., Richon, V.M., Breslow, R., Miller, T., and Kelly, W.K. (2001). Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 1, 194-202.
Marsischky, G.T., Filosi, N., Kane, M.F., and Kolodner, R. (1996). Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev 10, 407-420.
Marti, T.M., Hefner, E., Feeney, L., Natale, V., and Cleaver, J.E. (2006). H2AX
89
phosphorylation within the G1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks. Proc Natl Acad Sci U S A 103, 9891-9896.
Masumoto, H., Hawke, D., Kobayashi, R., and Verreault, A. (2005). A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436, 294-298.
Miao, F., and Natarajan, R. (2005). Mapping global histone methylation patterns in the coding regions of human genes. Mol Cell Biol 25, 4650-4661.
Miller, T., Krogan, N.J., Dover, J., Erdjument-Bromage, H., Tempst, P., Johnston, M., Greenblatt, J.F., and Shilatifard, A. (2001). COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci U S A 98, 12902-12907.
Morley, K.L., Ferguson, P.J., and Koropatnick, J. (2007). Tangeretin and nobiletin induce G1 cell cycle arrest but not apoptosis in human breast and colon cancer cells. Cancer Lett 251, 168-178.
Morrison, A.J., Highland, J., Krogan, N.J., Arbel-Eden, A., Greenblatt, J.F., Haber, J.E., and Shen, X. (2004). INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119, 767-775.
Murakami, A., Kuwahara, S., Takahashi, Y., Ito, C., Furukawa, H., Ju-Ichi, M., and Koshimizu, K. (2001). In vitro absorption and metabolism of nobiletin, a chemopreventive polymethoxyflavonoid in citrus fruits. Biosci Biotechnol Biochem 65, 194-197.
Ng, H.H., Feng, Q., Wang, H., Erdjument-Bromage, H., Tempst, P., Zhang, Y., and Struhl, K. (2002). Lysine methylation within the globular domain of histone H3 by Dot1 is important for telomeric silencing and Sir protein association. Genes Dev 16, 1518-1527.
Nijman, S.M., Luna-Vargas, M.P., Velds, A., Brummelkamp, T.R., Dirac, A.M., Sixma, T.K., and Bernards, R. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773-786.
Nurse, P. (2000). A long twentieth century of the cell cycle and beyond. Cell 100, 71-78.
Okada, Y., Feng, Q., Lin, Y., Jiang, Q., Li, Y., Coffield, V.M., Su, L., Xu, G., and Zhang, Y. (2005). hDOT1L links histone methylation to leukemogenesis. Cell 121, 167-178.
Osley, M.A. (2006). Regulation of histone H2A and H2B ubiquitylation. Brief Funct Genomic Proteomic 5, 179-189.
Outeiro, T.F., and Muchowski, P.J. (2004). Molecular genetics approaches in yeast to study amyloid diseases. J Mol Neurosci 23, 49-60.
90
Pan, M.H., Chen, W.J., Lin-Shiau, S.Y., Ho, C.T., and Lin, J.K. (2002). Tangeretin induces cell-cycle G1 arrest through inhibiting cyclin-dependent kinases 2 and 4 activities as well as elevating Cdk inhibitors p21 and p27 in human colorectal carcinoma cells. Carcinogenesis 23, 1677-1684.
Pellicioli, A., and Foiani, M. (2005). Signal transduction: how rad53 kinase is activated. Curr Biol 15, R769-771.
Petranovic, D., and Nielsen, J. (2008). Can yeast systems biology contribute to the understanding of human disease? Trends Biotechnol 26, 584-590.
Pokholok, D.K., Harbison, C.T., Levine, S., Cole, M., Hannett, N.M., Lee, T.I., Bell, G.W., Walker, K., Rolfe, P.A., Herbolsheimer, E., et al. (2005). Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517-527.
Qin, S., and Parthun, M.R. (2002). Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol Cell Biol 22, 8353-8365.
Rhind, N., and Russell, P. (1998). Mitotic DNA damage and replication checkpoints in yeast. Curr Opin Cell Biol 10, 749-758.
Robzyk, K., Recht, J., and Osley, M.A. (2000). Rad6-dependent ubiquitination of histone H2B in yeast. Science 287, 501-504.
Rodriguez, J., Yanez, J., Vicente, V., Alcaraz, M., Benavente-Garcia, O., Castillo, J., Lorente, J., and Lozano, J.A. (2002). Effects of several flavonoids on the growth of B16F10 and SK-MEL-1 melanoma cell lines: relationship between structure and activity. Melanoma Res 12, 99-107.
Rotman, G., and Shiloh, Y. (1999). ATM: a mediator of multiple responses to genotoxic stress. Oncogene 18, 6135-6144.
Sanchez, Y., Bachant, J., Wang, H., Hu, F., Liu, D., Tetzlaff, M., and Elledge, S.J. (1999). Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 286, 1166-1171.
Schneider, J., Wood, A., Lee, J.S., Schuster, R., Dueker, J., Maguire, C., Swanson, S.K., Florens, L., Washburn, M.P., and Shilatifard, A. (2005). Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. Mol Cell 19, 849-856.
Schubeler, D., MacAlpine, D.M., Scalzo, D., Wirbelauer, C., Kooperberg, C., van Leeuwen, F., Gottschling, D.E., O''Neill, L.P., Turner, B.M., Delrow, J., et al. (2004). The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev 18, 1263-1271.
Segurado, M., and Tercero, J.A. (2009). The S-phase checkpoint: targeting the replication fork. Biol Cell 101, 617-627.
91
Shahbazian, M.D., Zhang, K., and Grunstein, M. (2005). Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1. Mol Cell 19, 271-277.
Shilatifard, A. (2006). Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75, 243-269.
Shilatifard, A. (2008). Molecular implementation and physiological roles for histone H3 lysine 4 (H3K4) methylation. Curr Opin Cell Biol 20, 341-348.
Sims, R.J., 3rd, Nishioka, K., and Reinberg, D. (2003). Histone lysine methylation: a signature for chromatin function. Trends Genet 19, 629-639.
Sims, R.J., 3rd, and Reinberg, D. (2006). Histone H3 Lys 4 methylation: caught in a bind? Genes Dev 20, 2779-2786.
Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D., and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9, 3273-3297.
Steger, D.J., Lefterova, M.I., Ying, L., Stonestrom, A.J., Schupp, M., Zhuo, D., Vakoc, A.L., Kim, J.E., Chen, J., Lazar, M.A., et al. (2008). DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol 28, 2825-2839.
Surh, Y.J. (2003). Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3, 768-780.
Sweeney, F.D., Yang, F., Chi, A., Shabanowitz, J., Hunt, D.F., and Durocher, D. (2005). Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation. Curr Biol 15, 1364-1375.
Tanaka, H., Arakawa, H., Yamaguchi, T., Shiraishi, K., Fukuda, S., Matsui, K., Takei, Y., and Nakamura, Y. (2000). A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404, 42-49.
Tanaka, S., Sato, T., Akimoto, N., Yano, M., and Ito, A. (2004). Prevention of UVB-induced photoinflammation and photoaging by a polymethoxy flavonoid, nobiletin, in human keratinocytes in vivo and in vitro. Biochem Pharmacol 68, 433-439.
Tanny, J.C., Erdjument-Bromage, H., Tempst, P., and Allis, C.D. (2007). Ubiquitylation of histone H2B controls RNA polymerase II transcription elongation independently of histone H3 methylation. Genes Dev 21, 835-847.
Tenney, K., and Shilatifard, A. (2005). A COMPASS in the voyage of defining the role of trithorax/MLL-containing complexes: linking leukemogensis to covalent modifications of chromatin. J Cell Biochem 95, 429-436.
92
Tsuji, P.A., and Walle, T. (2006). Inhibition of benzo[a]pyrene-activating enzymes and DNA binding in human bronchial epithelial BEAS-2B cells by methoxylated flavonoids. Carcinogenesis 27, 1579-1585.
Usui, T., Ogawa, H., and Petrini, J.H. (2001). A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol Cell 7, 1255-1266.
Utley, R.T., Lacoste, N., Jobin-Robitaille, O., Allard, S., and Cote, J. (2005). Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol Cell Biol 25, 8179-8190.
van Attikum, H., and Gasser, S.M. (2005). The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 6, 757-765.
van Leeuwen, F., Gafken, P.R., and Gottschling, D.E. (2002). Dot1p modulates silencing in yeast by methylation of the nucleosome core. Cell 109, 745-756.
Vialard, J.E., Gilbert, C.S., Green, C.M., and Lowndes, N.F. (1998). The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J 17, 5679-5688.
Walle, T. (2007). Methoxylated flavones, a superior cancer chemopreventive flavonoid subclass? Semin Cancer Biol 17, 354-362.
Walter, D., Matter, A., and Fahrenkrog, B. (2010). Bre1p-mediated histone H2B ubiquitylation regulates apoptosis in Saccharomyces cerevisiae. J Cell Sci 123, 1931-1939.
Wan, Y.S., Wang, Z.Q., Shao, Y., Voorhees, J.J., and Fisher, G.J. (2001). Ultraviolet irradiation activates PI 3-kinase/AKT survival pathway via EGF receptors in human skin in vivo. International Journal of Oncology 18, 461-466.
Weinert, T. (1998). DNA damage checkpoints update: getting molecular. Curr Opin Genet Dev 8, 185-193.
Weinert, T.A., Kiser, G.L., and Hartwell, L.H. (1994). Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 8, 652-665.
Willis, I., Menter, J.M., and Whyte, H.J. (1981). The rapid induction of cancers in the hairless mouse utilizing the principle of photoaugmentation. J Invest Dermatol 76, 404-408.
Wolff, G.L., Kodell, R.L., Moore, S.R., and Cooney, C.A. (1998). Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 12, 949-957.
Wood, A., Krogan, N.J., Dover, J., Schneider, J., Heidt, J., Boateng, M.A., Dean, K., Golshani, A., Zhang, Y., Greenblatt, J.F., et al. (2003). Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter.
93
Mol Cell 11, 267-274.
Wu, M., Kang, M.M., Schoene, N.W., and Cheng, W.H. (2010). Selenium compounds activate early barriers of tumorigenesis. J Biol Chem 285, 12055-12062.
Wysocki, R., Javaheri, A., Allard, S., Sha, F., Cote, J., and Kron, S.J. (2005). Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol Cell Biol 25, 8430-8443.
Yanez, J., Vicente, V., Alcaraz, M., Castillo, J., Benavente-Garcia, O., Canteras, M., and Teruel, J.A. (2004). Cytotoxicity and antiproliferative activities of several phenolic compounds against three melanocytes cell lines: relationship between structure and activity. Nutr Cancer 49, 191-199.
Zhao, X., Muller, E.G., and Rothstein, R. (1998). A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell 2, 329-340.
Zhao, X., and Rothstein, R. (2002). The Dun1 checkpoint kinase phosphorylates and regulates the ribonucleotide reductase inhibitor Sml1. Proc Natl Acad Sci U S A 99, 3746-3751.
Zhou, B.B., and Elledge, S.J. (2000). The DNA damage response: putting checkpoints in perspective. Nature 408, 433-439.
Zhou, Z., and Elledge, S.J. (1993). DUN1 encodes a protein kinase that controls the DNA damage response in yeast. Cell 75, 1119-1127.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔