(3.237.97.64) 您好!臺灣時間:2021/03/03 01:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉欣怡
研究生(外文):Shin-Yi Liu
論文名稱:颱風造成之海洋反應:以2009年熱帶風暴莫拉菲(Molave)為例
論文名稱(外文):Ocean response caused by typhoon and eddy interaction: a case study of tropical storm Molave(2009)
指導教授:唐存勇唐存勇引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:62
中文關鍵詞:海氣象即時觀測系統莫拉菲熱帶風暴海-氣熱通量
外文關鍵詞:TOADYMolaveTropical Stormair-sea heat flux
相關次數:
  • 被引用被引用:0
  • 點閱點閱:173
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
西北太平洋為全球颱風發生頻率最高且強度最強的區域,近期研究顯示海洋的預始狀態(pre-condition)對於颱風有所影響,除衛星資料可得知海洋表面狀態外,仍缺乏海洋長期觀測,亦無從得知颱風-海洋交互作用機制。藉由西北太平洋及其邊緣海之颱風-海洋交互作用與內波之研究,將海氣象觀測系統佈放於西北太平洋最常侵台之颱風路徑上,長期觀測大氣與上層海溫的變化情形,提供颱風通過時海洋的環境條件,以研究颱風-海洋交互作用機制與反應。本研究選擇2009年7月15日於菲律賓呂宋島東南海面形成並以西北西方向移動之熱帶風暴莫拉菲(Molave)為例,並檢視衛星海平面高度異常值,發現觀測平台附近有暖心渦旋的存在。因此,本研究藉由整體參數法及熱含量的計算,分析觀測之大氣與海洋資料,並與衛星觀測之海水位高度異常資料比對,探討當熱帶風暴莫拉菲通過前、中、後期海洋-熱帶風暴的相互作用、海洋結構的變化與海洋中暖渦旋存在之影響。
研究結果顯示:大氣、海洋之觀測參數變化與海-氣熱量交換非明顯的改變於熱帶風暴莫拉菲通過前緣,而是主要發生於熱帶風暴莫拉菲通過中、後時期;於熱帶風暴莫拉菲與觀測平台距離最小後2~4小時,海-氣溫差約增加3oC、風速達最大約23m/s、全天日射量降低至15W/m^2、可感熱通量與潛熱通量散失達最大約-80W/m^2與-450W/m^2,淨熱通量降低至-600.0W/m^2、混合層深度約40m等變化。於熱帶風暴莫拉菲遠離後1~2天,全天日射量之恢復,但海洋上層40m內之海溫下降約0.8oC,釋放到大氣的潛熱減少至-200W/m^2,熱含量約降低10^7J/m^2,混合層深度約加深25m。至離開2~3天後,海洋上層溫度重新再分層,海洋上層40m內之海溫恢復,但混合層深度仍維持於65m。另外,前人研究於大洋上暖渦旋對於颱風強度上扮演的重要角色,以熱帶風暴莫拉菲為例,暖渦旋提供潛熱釋放,熱含量之散失約10^7J/m^2,並由衛星資料顯示暖渦旋有微弱但可見之降低趨勢,熱帶風暴莫拉菲有些微增強的趨勢,顯示暖渦旋雖提供微小的熱量,但其並非為主要影響熱帶風暴莫拉菲強度增強之唯一機制。

The northwestern Pacific Ocean is the region where the tropical cyclone with strong intensity occurs most frequently. Previous studies showed that the oceanic pre-condition plays an important role on the characteristics of tropical cyclones. However, the mechanism still remains unclear due to lacking long-term oceanic observations. Three ATLAS buoys were deployed at northwestern Pacific Ocean to monitor atmospheric conditions and sea water temperature in the upper ocean. The intention is to study the air-sea interactions when typhoon passes by. In this study, a tropical cyclone (Molave) event was selected to investigate the variation of thermal structure of the upper ocean and air-sea inter-actions at the period during and after typhoon passed by.
The results showed that, at time 2-4 hours late when Molave was closest to the observational platform, the air-sea temperature difference can reach to 3oC, the wind speed increased to 23 m/s, the solar short-wave radiation lost 15 W/m^2, the sensible heat lost 80 W/m^2, the latent heat flux lost 450 W/m^2, net heat flux decreased to -600 W/m^2 and mixed layer depth increased to 40m. The net heat flux recovered its quantity at 1-2 days later after Molave, but the latent hear and heat content still lost energy from ocean. The mixed layer depth was deepening to 65m. After 2-3 days later, the thermal structure of the upper ocean was re-built but the mixed layer depth still remained at 65 m. The eddy in the open ocean also plays a role on the storm. In this case, the warm eddy provided heat energy for Molave about 10^7 J/m^2, and by the sea level anomalies from satellite observation showed the warm eddy are slightly weakening.

口試委員審定書………………………………………………………………………i
致謝………………………………………………………………………….………...ii
中文摘要…………………………………………………………………….………..iii
Abstract……………………………………………………………………….………iv
目錄……………………………………………………………………………..…..…v
圖表目錄………………………………………………………………………..…….vi
第一章 序論……………………………………………………………………..…1
1.1 研究背景回顧…………………………………………………………1
1.2 研究動機與目的………………………………………………………4
第二章 觀測資料描述…………………………………………………..…………5
第三章 分析方法…………………………………………………………………26
第四章 分析結果…………………………………………………………………35
第五章 討論與結論………………………………………………………………54
5.1 討論………………………………………………………..54
5.2 結論……………………………………………………..55
參考文獻…………………………………………………………………….……….59

Anthes, R. A., 1982: Tropical Cyclones: Their Evolution, Structure and Effects. Amer. Meteor. Soc., 208pp.
Berliand, M. E., and T. G. Berliand, 1952: Measurement of the effective radiation of the earth with varying cloud amounts (in Russian). IZV. Akad. Nauk SSSR, Ser. Geofiz., 1, 64-78.
Black, P. G., and L. K. Shay, 1998: Observations of tropical cyclone intensity change due to air-sea interaction processes. Preprints, Symp. On Tropical Cyclone Intensity Change, Phoenix, AZ, Amer. Meteor. Soc., 161-168.
Chen, S. S., J. F. Price, W. Zhao, M. A. Donelan, E. J. Walsh, and H. L. Tolman, 2007: The CBLAST hurricane program and the next-generation fully coupled atmosphere– wave–ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc., 88, 311–317.
Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 1783–1796.
Clark, N. E., L. Eber, R. M. Laurs, J. A. Renner and J. F. T. Saur, 1974: Heat exchange between ocean and atmosphere in the eastern North Pacific FOR 1961-1971. noaa Tech. Rep. NMFS SSRF-682, U.S. Department of Commerce, Washington, DC, 108 pp.
D’Asaro, E. A. (2003): The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33, 561–579.
D’Asaro, E. A., T. B. Sanford, P. P. Niiler, and E. J. Terrill (2007). Cold wake of Hurricane Frances, doi:10.1029/2007GRL030160.
Donelan, M. A., 1990: Air–sea interaction. The Sea, B. LeM.haut. and D. Hanes, Eds., Ocean Engineering Science, Vol. 9, John Wiley and Sons, 239–292.
Edson, J., and Coauthors, 2007: The Coupled Boundary Layers and Air–Sea Transfer Experiment in Low Winds. Bull. Amer. Meteor. Soc., 88, 341–356.
Emanuel, K., A., 1986: An air-sea interaction theory for tropical cyclones. Part I: Steady state maintenance., J. Atmos. Sci.,43, 585-604.
Emanuel, K. (2001): Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res., 106, D14, 14771-14781.
Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S.Young, 1996a: Bulk parameterization of air–sea fluxes for TOGA COARE. J. Geophys. Res., 101, 747–3764.
Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young,1996b: The cool skin and the warm layer in Bulk flux calculations. J. Geophys. Res., 101, 1295–1308.
Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev and J. B. Edson, 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm, J. Climate, 16, 571-591.
Fung, I. Y., D. E. Harrison, and A. A. Lacis, 1984: On the variability of the net longwave radiation at the ocean surface. Rev. Geophys, Space Phys.,22, 177-193.
Gill, A. E., 1982: Atmosphere-Ocean Dynamics. Academic Press, 662 pp.
Goni, G. J., and J. A. Trinanes, 2003: Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. Eos, Trans.Amer. Geophys. Union, 84, 573–580.
Gray, W. M., 1968: Global view of the origin of the tropical disturbances and storm. Mon. Wea. Rev., 96, 669-700.
Jacob, S. D., L. K. Shay, and A. J. Mariano, 2000: The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 14, 59-78.
Liou, K. N., 2002: An Introduction to Atmospheric Radiation. 2nd ed. San Diego, California: Academic Press.
Lee,C.-S., Y.-L. Lin, and K. K. W. Cheung, 2006: Tropical cyclone formations in the South China Sea associated with the Mei-yu front. Mon. Wea. Rev., 134, 2670-2687.
Sui et al.(2004)
Lin, I.-I., C.-C. Wu, K. A. Emanuel, I.-H. Lee, C.-R. Wu, and I.-F. Pun (2005), The interaction of supertyphoon Maemi (2003) with a warm ocean eddy, Mon. Weather Rev., 133, 2635– 2649.
Lin, I.-I., C.-C. Wu, I.-F. Pun, and D.-S. Ko (2008), Upper ocean thermal structure and the western North Pacific category-5 typhoons. Part I: Ocean features and category-5 typhoon’s intensification, Mon. Weather Rev., 136, 3288– 3306.
Lin, I. I., C. C. Wu, I. F. Pun, and D. S. Ko, 2008: Upper-ocean thermal structure and the Western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Weather Rev., 136, 3288-3306, doi: 10.1175/2008MWR2277.1.
Lin, I. I., I. F. Pun, and C. C. Wu, 2009a: Upper-ocean thermal structure and the Western North Pacific cat¬egory-5 typhoons. Part II: Dependence on transla¬tion speed. Mon. Weather Rev., 137, 3744-3757, doi: 10.1175/2009MWR2713.1.
Lin, I. I., C. H. Chen, I. F. Pun, W. T. Liu, and C. C. Wu, 2009b: Warm ocean anomaly, air sea fluxes, and the rapid intensification of tropical cyclone Nar¬gis (2008). Geophys. Res. Lett., 36, L03817, doi: 10.1029/2008GL035815.
Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of the air–sea exchange of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 1722–1735.
Lorsolo, S., and J. R. Schroeder, 2006a: Small scale features observed in the boundary layer of Hurricanes Isabel (2003) and Frances (2004). Proc. Air–Sea Interaction Conf., Atlanta, GA, Amer. Meteor. Soc., CD-ROM, 10.2.
McBride, J. L., 1995: Tropical cyclone formation. Global Perspectives on Tropical cyclones, WMO/TD NO. 693, Rep.TCP-38, World Meteorological Organization, 63-105.
Price JF (1981) Upper ocean response to a hurricane. J Phys Oceanogr 11:153–173
Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 8411– 8427.
Reed, R., 1977: On estimating insolation over the ocean. J. Phys. Oceanogr., 7, 482-485.
Sanford, T. B., Price, J. F., Girton, J. B., and Webb, D. C.: Highly resolved ocean response to a hurricane, Geophys. Res. Lett., 34, L13604, doi:10.1029/2007GL029679, 2007.
Shay, L. K., Goni G. J., Black P. G., 2000: Effect of a Warm Oceanic Feature on Hurricane Opal. Mon. Wea. Rev., 128, 1366-1383.
Wu, C. C., C. Y. Lee, and I. I. Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 3562-3578, doi: 10.1175/JAS4051.1.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔