(3.239.159.107) 您好!臺灣時間:2021/03/08 20:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沈盈妏
研究生(外文):Ying-Wen Shen
論文名稱:應用小鼠及豬骨髓間葉幹細胞治療肝纖維化小鼠之研究
論文名稱(外文):Bone Marrow-Derived Mesenchymal Stem Cells Reduce Liver Fibrosis in Carbon Tetrachloride-Treated Mice
指導教授:吳信志
指導教授(外文):Shinn-Chih Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:動物科學技術學研究所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:92
中文關鍵詞:骨髓間葉幹細胞肝纖維化轉基因豬轉基因鼠細胞移植
外文關鍵詞:Mesenchymal stem cellsLiver fibrosisEGFP transgenic miceEGFP transgenic pigCell transplantation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據行政院衛生署之報告顯示,因慢性肝炎與肝硬化而死亡之人口,長年於台灣十大死因中占據一席之地,而全球感染慢性肝炎者且高達3億人口之譜,由此可見,肝病確實對人類健康產生一定程度之威脅,因此治療肝臟疾病與幫助恢復肝臟功能,已成為目前研究之ㄧ重要課題。 肝纖維化 (liver fibrosis) 為各種慢性肝病進展為肝硬化之必經途徑;其成因為肝臟遭受慢性損傷後反覆癒合等反應導致細胞外間質 (extracellular matrix-ECM) 過量堆積形成纖維狀傷疤,逐步惡化將破壞肝組織之結構並影響其功能,最後演變為肝硬化與肝功能衰竭(liver failure);因此探討如何阻止或延緩肝纖維化的發生,將對肝病之治療與後續之研究發展有重要之意義;然而肝臟移植為目前嚴重肝臟疾病患者常採用之治療方式,但其受限於捐贈肝之來源短缺、移植後可能具有免疫排斥反應及多發性併發症等問題,在臨床治療上有其限制;因此如何於惡化至肝硬化之不可逆階段前,予以治療並針對肝臟疾病發展新治療方式,為現下十分重要之課題。 近來已有研究報告指出,移植骨髓間葉幹細胞 (mesenchymal stem cells, MSCs) 於肝臟受損之動物模式,可有效減緩肝纖維化之病程,然而追蹤所施打之細胞遷移入肝臟之比例仍十分低,因此如若要提升治療之效果或許可藉由提升 MSCs 遷移入肝臟之比例著手。
為證實 MSCs 具有分化為肝細胞之潛能,本試驗首先會將分離純化後之小鼠與豬之骨髓間葉幹細胞於體外進行誘導分化,經由螢光免疫染色及即時定量 PCR (Q-RT-PCR) 證實分化後之小鼠與豬骨髓間葉幹細胞皆具有分化為肝細胞之特性;此外為追蹤施打入肝受損小鼠體內之間葉幹細胞,本試驗使用之骨髓間葉幹細胞皆分離自表現β-actin啟動子與綠色螢光蛋白質 (enhanced green fluorescent protein, EGFP) 之轉基因螢光小鼠與豬之骨髓。
由於本試驗假設所施打之骨髓間葉幹細胞可能因為其細胞團塊之大小不同,因而會卡於肝臟血管內進而提升骨髓幹細胞遷移入肝臟之比例,進而提升治療肝纖維化之效果;因此,首先將小鼠與豬骨髓間葉幹細胞經由純化及分離後培養於不貼附培養皿 (Ultra-low plate) 使其成為不同大小之球狀細胞團,隨後以過濾篩區分不同大小之細胞團包括: < 40 μm、 40~70 μm及 >70 μm,以脾內及肝門靜脈注射之方法分別將不同大小之細胞團塊注入肝纖維化小鼠體內,八週後綠色螢光小鼠及豬骨髓間葉幹細胞之遷移及參與改善肝纖維化進程則由血液生化值、肝臟切片之免疫組織染色及肝臟之羥脯胺酸 (hydroxyproline) 萃取等分析。 試驗結果顯示,無論是同種異體或異種之骨髓間葉幹細胞移植皆可顯著降低肝內羥脯胺酸之含量 (p < 0.05),特別在小鼠骨髓間葉幹細胞團塊40~70 μm 移植組其不僅於細胞遷移比例之提升且於促使肝纖維化之改善皆顯著優於移植懸浮細胞而非細胞團塊組 (p < 0.05) ,而前人所測試之細胞皆為懸浮細胞而非細胞團塊。
綜合上述,骨髓間葉幹細胞具有分化為肝細胞之潛能,且同種異體或異種之骨髓間葉幹細胞不論以脾內注射或肝門靜脈注射移植入肝纖維化小鼠體內,皆發現會遷移至肝臟中且顯著改善肝纖維化現象及降低肝內羥脯胺酸含量,其中尤以小鼠骨髓間葉幹細胞團塊40 ~70 μm 移植組其細胞遷移比例及降低肝內羥脯胺酸含量皆顯著優於移植懸浮細胞而非細胞團塊組,鑑此,以骨髓間葉幹細胞為來源之細胞治療可採用細胞團塊移植法,其可有效改善實驗小鼠之肝纖維化,而或許此療法可提供一新觀點於臨床治療之研究。


According to the report of the Department of Health, Executive Yuan, R.O.C. (Taiwan), chronic liver disease and cirrhosis ranked the top ten in the major causes of death in Taiwan. In chronic liver diseases, liver fibrosis is one of the most common symptoms which is the excessive accumulation of extracellular matrix in the liver, and can subsequently lead to cirrhosis. One of the primary treatments for these various end-stage hepatic diseases is liver transplantation. However, this is limited by the lack of donor organs and the immuno-rejection from the recipient patients. Thus, it is necessary to devise better therapeutic methods for this disease. Recently, transplantation of bone marrow-derived mesenchymal stem cells (MSCs) has been shown to ameliorate liver fibrosis in animal models with only few cells migrated into damaged area. It is reasonable to suspect that liver fibrosis can be better mitigated by improving the migration rate of MSCs to the injured liver.
In this study, MSCs were induced to differentiate into functional hepatocyte-like cells under defined conditions, which suggest the potential for therapeutic applications in healing liver diseases. To assess the potential of MSCs to ameliorate liver fibrosis in vivo, bone marrow-derived MSCs was isolated from the femur of transgenic porcine (pMSCs) and mice (mMSCs) harboring β-actin promoter constructed with EGFP (enhanced green fluorescent protein) cDNA serving as a tracing marker and EGFP-pMSCs or EGFP-mMSCs before/after Ultra-low plate culture were transplanted into the portal vein or spleen of carbon tetrachloride (CCl4)-treated mice. I hypothesized that spheres of MSCs in different sizes would show different potential into the injured liver due to three-dimensional bulkiness. To test this hypothesis, the transplantation was done in different sizes of cell spheres including suspended single cells, cell spheres of &lt; 40μm, 40~70μm, and >70μm in diameter. After 4 weeks of transplantation, both the engraftments of EGFP-pMSCs and EGFP-mMSCs to the recipient livers were detected by immunohistochemistry with antibodies recognizing EGFP. The results showed that all of the cell transplanted mice could significantly ameliorate liver fibrosis compared to the non-transplanted control (p &lt; 0.05). Moreover, the liver hydroxyproline content significantly decreased and the migration rate of MSCs increased significantly in the group with mMSCs spheres of 40~70μm than suspended single cells transplanted into portal vein (p &lt; 0.05).
Taken together, no matter allogenically or xenogenically, MSCs transplanted into mice with liver fibrosis were able to migrate into the liver and significantly decrease the level of liver hydroxyproline content. Moreover, the migration rate is significantly higher in the transplantation group with mMSC spheres of 40~70μm than the group with suspended single cells. These findings provide new insights that bone marrow MSCs-based cell therapy could be transplanted in spheres and is potentially useful for the treatment of liver fibrosis and can even contribute to liver regeneration.


口試委員會審定書...................................... I
致 謝.................................................II
目 錄.................................................III
Index of Figures.......................................V
中文摘要...............................................VIII
英文摘要...............................................X
前 言................................................. 1
第一章 文獻檢討........................................3
1.1肝臟之構成與功能....................................3
1.1.1肝臟之構成........................................3
1.1.2肝臟之功能........................................6
1.2肝臟疾病............................................7
1.2.1急性肝炎和慢性肝炎................................7
1.2.2猛爆性肝炎........................................7
2.2.3肝纖維化..........................................8
1.3 四氯化碳誘導肝損傷.................................10
1.3.1四氯化碳簡介......................................10
1.3.2四氯化碳誘發肝損傷機制............................11
1.4 幹細胞簡介.........................................11
1.4.1幹細胞(Stem cells)..............................11
1.4.2 胚幹細胞 (embryonic stem cells, ESCs)............13
1.4.3 骨髓間葉幹細胞 (Bone marrow derived mesenchymal stem cells).................................................13
1.4.4骨髓間葉幹細胞移植於肝臟疾病之應用................17
1.5細胞移植點比較......................................18
第二章 試驗內容........................................20
試驗一: 綠色螢光小鼠與綠色螢光豬骨髓間葉幹細胞之分離與純化 ..............................................20
(一) 前言............................................20
(二) 材料與方法......................................21
(三) 結果與討論......................................26
試驗二: 綠色螢光小鼠與豬骨髓間葉幹細胞誘導分化為類肝細胞之研究...................................................31
(一)前言.............................................31
(二) 材料與方法......................................32
(三) 結果與討論......................................35
試驗三: 肝纖維化小鼠模式之建立與檢測..................40
(一) 前言............................................40
(二) 材料與分法......................................41
(三) 結果與討論......................................43
試驗四: 同種異體-小鼠骨髓間葉幹細胞應用於改善小鼠肝纖維化之可行性探討.............................................46
(一) 前言............................................46
(二) 材料與方法......................................47
(三) 結果與討論......................................53
試驗五: 異種 –豬骨髓間葉幹細胞於改善小鼠肝纖維化之可行性探討.....................................................68
(一) 前言............................................68
(二) 材料與方法......................................69
(三) 結果與討論......................................71
第三章 綜合討論........................................80
第四章 結論............................................82
第五章 展望............................................83
參考文獻..............................................84


林茂村。1990。解剖生理學.。科學圖書大庫。
Abdel-Latif, A., R. Bolli, I. M. Tleyjeh, V. M. Montori, E. C. Perin, C. A. Hornung, E. K. Zuba-Surma, M. Al-Mallah, and B. Dawn. 2007. Adult bone marrow-derived cells for cardiac repair - a systematic review and meta-analysis. Arch. Intern. Med. 167: 989-997.
Abdel Aziz, M. T., H. M. Atta, S. Mahfouz, H. H. Fouad, N. K. Roshdy, H. H. Ahmed, L. A. Rashed, D. Sabry, A. A. Hassouna, and N. M. Hasan. 2007. Therapeutic potential of bone marrow-derived mesenchymal stem cells on experimental liver fibrosis. Clin. Biochem. 40: 893-899.
Allen, T. D. and T. M. Dexter. 1983. Long-term bone-marrow cultures - an ultrastructural review. Scan. Electron. Microsc. 4: 1851-1866.
Arthur, M. J. P. 2000. Fibrogenesis - ii. Metalloproteinases and their inhibitors in liver fibrosis. Am. J. Physiol-Gastr. L. 279: G245-G249.
Avital, I., D. Inderbitzin, T. Aoki, D. B. Tyan, A. H. Cohen, C. Ferraresso, J. Rozga, W. S. Arnaout, and A. A. Demetriou. 2001. Isolation and characterization of bone marrow derived hepatocyte stem cells in humans and rats. Hepatology 34: 342a
Baddoo, M., K. Hill, R. Wilkinson, D. Gaupp, C. Hughes, G. C. Kopen, and D. G. Phinney. 2003. Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J. Cell. Biochem. 89: 1235-1249.
Bataller, R. and D. A. Brenner. 2005. Liver fibrosis. J. Clin. Invest. 115: 1100-1100.
Bianco, P., M. Riminucci, S. Gronthos, and P. G. Robey. 2001. Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells 19: 180-192.
Bittner, R. E., C. Schofer, K. Weipoltshammer, S. Ivanova, B. Streubel, E. Hauser, M. Freilinger, H. Hoger, A. Elbe-Burger, and F. Wachtler. 1999. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat. Embryol. (Berl). 199: 391-396.
Bjorklund, L. M., R. Sanchez-Pernaute, S. M. Chung, T. Andersson, I. Y. C. Chen, K. S. McNaught, A. L. Brownell, B. G. Jenkins, C. Wahlestedt, K. S. Kim, and O. Isacson. 2002. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a parkinson rat model. P.N.A.S. U.S.A. 99: 2344-2349.
Cameron, G. R. and W. A. E. Karunaratue. 1936. Carbon tetrachloride cirrhosis in relation to liver regeneration. J. Pathol. Bacterol. 42: 1~21.
Caplan, A. I. 1991. Mesenchymal stem-cells. J. Orth. Res. 9: 641-650.
Chamberlain, G., J. Fox, B. Ashton, and J. Middleton. 2007. Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25: 2739-2749.
Chan, S. L., M. Choi, S. Wnendt, M. Kraus, E. Teng, H. F. Leong, and S. Merchav. 2007. Enhanced in vivo homing of uncultured and selectively amplified cord blood cd34(+) cells by cotransplantation with cord blood-derived unrestricted somatic stem cells. Stem Cells 25: 529-536.
Chen, J. L., Y. Li, L. Wang, Z. G. Zhang, D. Y. Lu, M. Lu, and M. Chopp. 2001. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 32: 1005-1011.
Corcione, A., F. Benvenuto, E. Ferretti, D. Giunti, V. Cappiello, F. Cazzanti, M. Risso, F. Gualandi, G. L. Mancardi, V. Pistoia, and A. Uccelli. 2006. Human mesenchymal stem cells modulate b-cell functions. Blood 107: 367-372.
Dennis, J. E. and A. I. Caplan. 1996. Differentiation potential of conditionally immortalized mesenchymal progenitor cells from adult marrow of a h-2k(b)-tsa58 transgenic mouse. J. Cell. Physiol. 167: 523-538.
Djouad, F., P. Plence, C. Bony, P. Tropel, F. Apparailly, J. Sany, D. Noel, and C. Jorgensen. 2003. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102: 3837-3844.
Dor, Y., J. Brown, O. I. Martinez, and D. A. Melton. 2004. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429: 41-46.
Egusa, H., F. E. Schweizer, C. C. Wang, Y. Matsuka, and I. Nishimura. 2005. Neuronal differentiation of bone marrow-derived stromal stem cells involves suppression of discordant phenotypes through gene silencing. J. Biol. Chem. 280: 23691-23697.
Fang, B., M. Shi, L. Liao, S. Yang, Y. Liu, and R. C. Zhao. 2004. Systemic infusion of flk1(+) mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice. Transplantation 78: 83-88.
Fouillard, L., M. Bensidhoum, D. Bories, H. Bonte, M. Lopez, A. M. Moseley, A. Smith, S. Lesage, F. Beaujean, D. Thierry, P. Gourmelon, A. Najman, and N. C. Gorin. 2003. Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma. Leukemia 17: 474-476.
Fouw, J. D. . 1999. Carbon Tetrachloride. In world health organization 1,2,6,7,8,10: 176.
Fox, I. J. and J. Roy-Chowdhury. 2004. Hepatocyte transplantation. J. Hepatol. 40: 878-886.
Fu-Jiang, C., and F. Shi-Qing. 2009. Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury. Chin. Med. J. (Engl). 122: 225-231.
Gao, J. Z., J. E. Dennis, R. F. Muzic, M. Lundberg, and A. I. Caplan. 2001. The dynamic in vivo distribution of bone marrow-derived mesenchymal stent cells after infusion. Cells Tissues Organs 169: 12-20.
Gronthos, S., A. C. W. Zannettino, S. E. Graves, S. Ohta, S. J. Hay, and P. J. Simmons. 1999. Differential cell surface expression of the stro-1 and alkaline phosphatase antigens on discrete developmental stages in primary cultures of human bone cells. J. Bone Miner. Res. 14: 47-56.
Hardjo, M., M. Miyazaki, M. Sakaguchi, T. Masaka, S. Ibrahim, K. Kataoka, and N. Huh. 2009. Suppression of carbon tetrachloride-induced liver fibrosis by transplantation of a clonal mesenchymal stem cell line derived from rat bone marrow. Cell Transplant. 18: 89-99.
Iredale, J. P. 2003. Science, medicine, and the future - cirrhosis: New research provides a basis for rational and targeted treatments. Br. Med. J. 327: 143-147.
Isacson, O., C. van Horne, J. M. Schumacher, and A. L. Brownell. 2001. Improved surgical cell therapy in parkinson''s disease - physiological basis and new transplantation methodology. Parkinson''s Disease 86: 447-454.
Ishikawa, T., S. Terai, Y. Urata, Y. Marumoto, K. Aoyama, T. Murata, Y. Mizunaga, N. Yamamoto, H. Nishina, K. Shinoda, and I. Sakaida. 2007. Administration of fibroblast growth factor 2 in combination with bone marrow transplantation synergistically improves carbon-tetrachloride-induced liver fibrosis in mice. Cell Tissue Res. 327: 463-470.
Klyushnenkova, E., J. D. Mosca, V. Zernetkina, M. K. Majumdar, K. J. Beggs, D. W. Simonetti, R. J. Deans, and K. R. McIntosh. 2005. T cell responses to allogeneic human mesenchymal stem cells: Immunogenicity, tolerance, and suppression. J. Biomed. Sci. 12: 47-57.
Koc, O. N., S. L. Gerson, B. W. Cooper, S. M. Dyhouse, S. E. Haynesworth, A. I. Caplan, and H. M. Lazarus. 2000. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J. Clin. Oncol. 18: 307-316.
Krizhanovsky, V., M. Yon, R. A. Dickins, S. Hearn, J. Simon, C. Miething, H. Yee, L. Zender, and S. W. Lowe. 2008. Senescence of activated stellate cells limits liver fibrosis. Cell 134: 657-667.
Kuo, T. K., S. P. Hung, C. H. Chuang, C. T. Chen, Y. R. V. Shih, S. C. Y. Fang, V. W. Yang, and O. K. Lee. 2008. Stem cell therapy for liver disease: Parameters governing the success of using bone marrow mesenchymal stem cells. Gastroenterology 134: 2111-2121.
Lee, K. D., T. K. C. Kuo, J. Whang-Peng, Y. F. Chung, C. T. Lin, S. H. Chou, J. R. Chen, Y. P. Chen, and O. K. S. Lee. 2004a. In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40: 1275-1284.
Lee, O. K., T. K. Kuo, W. M. Chen, K. D. Lee, S. L. Hsieh, and T. H. Chen. 2004b. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103: 1669-1675.
Malaval, L., D. Modrowski, A. K. Gupta, and J. E. Aubin. 1994. Cellular expression of bone-related proteins during in-vitro osteogenesis in rat bone-marrow stromal cell-cultures. J. Cell. Physiol. 158: 555-572.
Martin, G. R. 1981. Isolation of a pluripotent cell-line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem-cells. P. Natl. Acad. Sci-Biol. 78: 7634-7638.
Menon, L. G., S. Picinich, R. Koneru, H. Gao, S. Y. Lin, M. Koneru, P. Mayer-Kuckuk, J. Glod, and D. Banerjee. 2007. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 25: 520-528.
Oh, S. H., M. Miyazaki, H. Kouchi, Y. Inoue, M. Sakaguchi, T. Tsuji, N. Shima, K. Higashio, and M. Namba. 2000. Hepatocyte growth factor induces differentiation of adult rat bone marrow cells into a hepatocyte lineage in vitro. Biochem. Biophys. Res. Commun. 279: 500-504.
Oyagi, S., M. Hirose, M. Kojima, M. Okuyama, M. Kawase, T. Nakamura, H. Ohgushi, and K. Yagi. 2006. Therapeutic effect of transplanting hgf-treated bone marrow mesenchymal cells into ccl4-injured rats. J. Hepatol. 44: 742-748.
Patel, S. A., L. Sherman, J. Munoz, and P. Rameshwar. 2008. Immunological properties of mesenchymal stem cells and clinical implications. Arch. Immunol. Ther. Exp. (Warsz). 56: 1-8.
Petersen, B. E., W. C. Bowen, K. D. Patrene, W. M. Mars, A. K. Sullivan, N. Murase, S. S. Boggs, J. S. Greenberger, and J. P. Goff. 1999. Bone marrow as a potential source of hepatic oval cells. Science 284: 1168-1170.
Phinney, D. G., G. Kopen, R. L. Isaacson, and D. J. Prockop. 1999. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: Variations in yield, growth, and differentiation. J. Cell. Biochem. 72: 570-585.
Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143-147.
Pittenger, M. F., J. D. Mosca, and K. R. McIntosh. 2000. Human mesenchymal stem cells: Progenitor cells for cartilage, bone, fat and stroma. Curr. Top. Microbiol. Immunol. 251: 3-11.
Plant, N. . 2003. Molecular Toxicology. BIOS Scientific. 2, 3, 5:145.
Ruhnke, M., H. Ungefroren, G. Zehle, M. Bader, B. Kremer, and F. Fandrich. 2003. Long-term culture and differentiation of rat embryonic stem cell-like cells into neuronal, glial, endothelial, and hepatic lineages. Stem Cells 21: 428-436.
Sakaida, I., S. Terai, N. Yamamoto, K. Aoyama, T. Ishikawa, H. Nishina, and K. Okita. 2004. Transplantation of bone marrow cells reduces ccl4-induced liver fibrosis in mice. Hepatology 40: 1304-1311.
Sato, K., K. Ozaki, I. Oh, A. Meguro, K. Hatanaka, T. Nagai, K. Muroi, and K. Ozawa. 2007. Nitric oxide plays a critical role in suppression of t-cell proliferation by mesenchymal stem cells. Blood 109: 228-234.
Schwartz, R. E., M. Reyes, L. Koodie, Y. H. Jiang, M. Blackstad, T. Lund, T. Lenvik, S. Johnson, W. S. Hu, and C. M. Verfaillie. 2002. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest. 109: 1291-1302.
Scott, L. Friedman. 2008. Mechanisms of hepatic fibrogenesis. Gastroenterology 134:1655~1669.
Sheweita, S. A., M. Abd El-Gabar, and M. Bastawy. 2001. Carbon tetrachloride-induced changes in the activity of phase ii drug-metabolizing enzyme in the liver of male rats: Role of antioxidants. Toxicology 165: 217-224.
Sun, S. K., Z. K. Guo, X. R. Xiao, B. Liu, X. D. Liu, P. H. Tang, and N. Mao. 2003. Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem Cells 21: 527-535.
Sun, Y., L. Chen, X. G. Hou, W. K. Hou, J. J. Dong, L. Sun, K. X. Tang, B. Wang, J. Song, H. Li, and K. X. Wang. 2007. Differentiation of bone marrow-derived mesenchymal stem cells from diabetic patients into insulin-producing cells in vitro. Chin. Med. J. (Engl). 120: 771-776.
Tavassoli, M. and K. Takahashi. 1982. Morphological-studies on long-term culture of marrow-cells - characterization of the adherent stromal cells and their interactions in maintaining the proliferation of hematopoietic stem-cells. Am. J. Anat. 164: 91-111.
Terai, S., I. Sakaida, N. Yamamoto, K. Omori, T. Watanabe, S. Ohata, T. Katada, K. Miyamoto, K. Shinoda, H. Nishina, and K. Okita. 2003. An in vivo model for monitoring trans-differentiation of bone marrow cells into functional hepatocytes. J. Biochem. (Tokyo). 134: 551-558.
Thomson, J. A. 1998. Embryonic stem cell lines derived from human blastocysts (vol 282, pg 1147, 1998). Science 282: 1827-1827.
Tropel, P., D. Noel, N. Platet, P. Legrand, A. L. Benabid, and F. Berger. 2004. Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp. Cell Res. 295: 395-406.
Tsai, M. S., J. L. Lee, Y. J. Chang, and S. M. Hwang. 2004. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum. Reprod. 19: 1450-1456.
Urban, V. S., J. Kiss, J. Kovacs, E. Gocza, V. Vas, E. Monostori, and F. Uher. 2008. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 26: 244-253.
Wang, X., H. Willenbring, Y. Akkari, Y. Torimaru, M. Foster, M. Al-Dhalimy, E. Lagasse, M. Finegold, S. Olson, and M. Grompe. 2003. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422: 897-901.
Weber, L. W. D., M. Boll, and A. Stampfl. 2003. Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model. Crit. Rev. Toxicol. 33: 105-136.
Zeng, L. P., E. Rahrmann, Q. S. Hu, T. Lund, L. Sandquist, M. Felten, T. D. O''Brien, J. Y. Zhang, and C. Verfaillie. 2006. Multipotent adult progenitor cells from swine bone marrow. Stem Cells 24: 2355-2366.
Zuckerman, K. S. and M. S. Wicha. 1983. Extracellular-matrix production by the adherent cells of long-term murine bone-marrow cultures. Blood 61: 540-547.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔