跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 18:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳東昇
研究生(外文):Dong-Sheng Wu
論文名稱:利用微奈米轉印技術製作高次序體異質接面結構有機太陽能電池
論文名稱(外文):Fabrication of Highly-Ordered Bulk Hetero-Junction Structure Organic Solar Cell by Micro-Transfer Printing
指導教授:李世光李世光引用關係
指導教授(外文):Chih-Kung Lee
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工程科學及海洋工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:中文
論文頁數:142
中文關鍵詞:微奈米成形微奈轉印印刷有機太陽能電P3HTPCBM正交溶劑
外文關鍵詞:Micro and nanopatterning techniqueMicro-transfer printingOSCP3HTPCBMOrthogonal-solvant
相關次數:
  • 被引用被引用:1
  • 點閱點閱:984
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以簡單之微奈米轉印技術製作出高次序有序結構的體異質接面有機太陽能電池,並討論製程中許多的參數條件對有機太陽能電池的影響。
在製作高次序有序結構的有機太陽能電池主動層部分,先利用微奈米成形技術製備一母模,利用矽膠高分子材料翻模得一轉印章,在轉印章上以塗佈方式塗佈上一層有機薄膜後,直接以簡單之轉印方式,將具有特定圖形結構的薄膜轉印至另一目標基板上;並使用正交溶液之特性,可以避免在塗佈第二層有機材料時,將已經轉印之具有圖形結構的有機薄膜發生互溶的效應。所以本論文之具有結構之有機太陽能電池以全溶液製程方式製作,具有製程簡單快速、可大面積化、具可撓性等優點。
This thesis is about using micro-transfer printing technology to produce organic solar cells of highly-ordered bulk hetero-junction structure, and reviewing the effects of various processes parameters on the cell.
In the making of the cells active layer of the bulk hetero-junction(BHJ) structure, micro and nanopatterning techniques were used to produce the mold. Polymer material molding(PDMS) were adopted for transfer stamping. After spin coating a layer of organic thin film on the transfer stamp, we used simple transfer printing techniques to transfer the structure of the thin film to another plate. The use of orthogonal-solvant is also vital when the second layer of organic materials is to be coated inorder to prevent dissolving the first layer organic thin film on the plate. With all these processed taken, into consinderation, process introduced in the making of structured organic solar cells are therefore simple, swift, flexible, and most importantly, can be produced in large areas.
謝誌.......................................................I
中文摘要..................................................II
Abstract.................................................III
目錄......................................................IV
表目錄..................................................VIII
圖目錄....................................................IX
第一章 緒論................................................1
1.1 研究動機...............................................1
1.2 論文架構...............................................5
1.3 關於太陽能.............................................7
1.3.1 能源之源.............................................7
1.3.2 太陽輻射光譜.........................................8
1.3.3 大氣質量............................................11
1.3.4 太陽能電池的世代發展................................13
1.3.4.1 第一代太陽能電池..................................13
1.3.4.2 第二代太陽能電池..................................13
1.3.4.3 第三代太陽能電池..................................15
第二章 太陽能電池原理.....................................20
2.1 太陽能電池的特性分析..................................20
2.2 太陽能電池的工作機制..................................25
2.2.1 光電效應............................................25
2.2.2 光伏效應............................................25
2.2.2.1 無機半導體的光伏效應..............................25
2.2.2.2 有機半導體的光伏效應..............................29
第三章 文獻回顧與技術發展.................................39
3.1 有機太陽能電池........................................39
3.1.1 導電高分子的發現與發展..............................39
3.1.2 有機太陽能電池結構之發展............................41
3.1.2.1 單層結構有機太陽能電池............................42
3.1.2.2 雙層與多層平面結構有機太陽能電池..................42
3.1.2.3 無次序塊材異質接面結構有機太陽能電池..............50
3.1.2.4 有次序塊材異質接面結構有機太陽能電池..............52
3.2 微奈米圖形與成形技術..................................60
3.2.1 自然界中的奈米圖形..................................60
3.2.2 微奈米成形技術......................................64
3.2.2.1 光微影技術........................................64
3.2.2.2 軟性微影技術......................................64
3.2.2.3 奈米壓印技術......................................67
3.2.2.4 紫外光奈米壓印技術................................67
3.3 微奈米成形技術在有機太陽能電池之應用..................70
3.4 常見增進光電轉換效率之方法............................74
3.4.1 退火處理............................................74
3.4.2 材料濃度與比例......................................78
3.4.3 溶劑影響............................................80
3.4.4 混合式..............................................81
3.4.5 建置結構............................................83
3.4.6 疊層法..............................................84
3.4.7 PIN式...............................................85
3.4.8 電極因素............................................85
第四章 實驗步驟與方法.....................................87
4.1 翻模模板製備..........................................87
4.1.1 光微影術模板........................................87
4.2 PDMS轉印章製備........................................89
4.3 微奈米轉印實驗........................................89
4.4 原子力顯微鏡有機薄膜膜厚量測..........................90
4.5 掃描式電子顯微鏡量測..................................90
4.6 有機太陽能電池元件製作................................90
4.6.1 TO導電玻璃圖形化製備................................92
4.6.2 PEDOT電洞傳輸層.....................................94
4.6.3 主動層製作..........................................94
4.6.3.1 體異質接面結構....................................95
4.6.3.2 雙層平面異質接面結構..............................95
4.6.3.3 有次序體異質接面結構..............................96
4.6.4 前退火處理..........................................96
4.6.5 金屬電極蒸鍍........................................96
4.6.6 後退火處理..........................................97
4.6.7 封裝................................................97
4.7 元件量測..............................................97
第五章 結果與討論.........................................99
5.1 前言..................................................99
5.2 翻模模板..............................................99
5.2.1 光微影術模板........................................99
5.3 PDMS轉印圖章.........................................103
5.4 微奈米轉印圖形分析...................................105
5.4.1 利用PDMS凸章與凹章轉印圖形結構.....................105
5.5 有機薄膜膜厚分析.....................................109
5.5.1 有機薄膜膜厚.......................................109
5.5.2 轉印薄膜圖形結構AFM量測............................114
5.6 參數條件與元件特性分析...............................120
5.6.1 主動層膜厚與元件特性分析...........................120
5.6.2 P3HT層膜厚與元件特性分析...........................121
5.6.3 PCBM層膜厚與元件特性分析...........................124
5.7 結構與元件特性分析...................................125
5.7.1 PDMS轉印週期大小與元件特性分析.....................125
第六章 結論與未來展望....................................127
6.1 結論.................................................127
6.2 未來展望.............................................127
第七章 參考文獻..........................................129
[1]"圖片來源:http://www.gcyouth.net/uploadfiles/1_1.jpg."
[2]"圖片來源:http://en.wikipedia.org/wiki/File:Solar_Spectrum.png."
[3]D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A new silicon p-n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, vol. 25, pp. 676-677, 1954.
[4]"圖片來源:http://www.jergym.hiedu.cz/~canovm/elektro/slunce/slunce.htm."
[5]D. E. Carlson, and C. R. Wronski, "Amorphous silicon solar cell," Applied Physics Letters, vol. 28, pp. 671-673, 1976.
[6]K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, and A. Duda, "Properties of 19.2% efficiency ZnO/CdS/CuInGaSe thin-film solar cells," Progress in Photovoltaics: Research and Applications, vol. 11, pp. 225-230, 2003.
[7]C. W. Tang, "Two-layer organic photovoltaic cell," Applied Physics Letters, vol. 48, pp. 183-185, 1986.
[8]B. Oregan, and M. Gratzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, pp. 737-740, Oct 1991.
[9]G. Yu, K. Pakbaz, and A. J. Heeger, "Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity," Applied Physics Letters, vol. 64, pp. 3422-3424, 1994.
[10]J. G. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, "4.2% efficient organic photovoltaic cells with low series resistances," Applied Physics Letters, vol. 84, pp. 3013-3015, Apr 2004.
[11]J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, "Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions," Applied Physics Letters, vol. 85, pp. 5757-5759, 2004.
[12]M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, "Solar cell efficiency tables (Version 34)," Progress in Photovoltaics: Research and Applications, vol. 17, pp. 320-326, 2009.
[13]B. L. Anderson, Fundamentals of semiconductor devices. Boston :: McGraw-Hill Higher Education, 2005.
[14]J. C. Bernede, "Organic photovoltaic cells: History, principle and techniques," Journal of the Chilean Chemical Society, vol. 53, pp. 1549-1564, Sep 2008.
[15]J. M. Honig, and C. Kittel, " Introduction to solid states physics," Journal of Chemical Education, vol. 44, pp. 430-&, 1967.
[16]A. G. Brian, and C. H. Mark, "Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation," Journal of Applied Physics, vol. 93, pp. 3605-3614, 2003.
[17]B. A. Gregg, "Bilayer molecular solar cells on spin-coated TiO2 substrates," Chemical Physics Letters, vol. 258, pp. 376-380, 1996.
[18]P. Blom, V. Mihailetchi, L. Koster, and D. Markov, "Device physics of polymer:fullerene bulk heterojunction solar cells," Advanced Materials, vol. 19, pp. 1551-1566, 2007.
[19]V. Choong, Y. Park, Y. Gao, T. Wehrmeister, K. Mullen, B. R. Hsieh, and C. W. Tang, "Dramatic photoluminescence quenching of phenylene vinylene oligomer thin films upon submonolayer Ca deposition," Applied Physics Letters, vol. 69, pp. 1492-1494, 1996.
[20]T. Stubinger, and W. Brutting, "Exciton diffusion and optical interference in organic donor--acceptor photovoltaic cells," Journal of Applied Physics, vol. 90, pp. 3632-3641, 2001.
[21]D. E. Markov, E. Amsterdam, P. W. M. Blom, A. B. Sieval, and J. C. Hummelen, "Accurate measurement of the exciton diffusion length in a conjugated polymer using a heterostructure with a side-chain cross-linked fullerene layer," The Journal of Physical Chemistry A, vol. 109, pp. 5266-5274, 2005.
[22]R. N. Marks, J. J. M. Halls, D. D. C. Bradley, R. H. Friend, and A. B. Holmes, "The photovolatic response in poly(p-phenylene vinylene) thin-film devices," Journal of Physics-Condensed Matter, vol. 6, pp. 1379-1394, Feb 1994.
[23]P. Peumans, and S. R. Forrest, "Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells," Applied Physics Letters, vol. 79, pp. 126-128, 2001.
[24]H. Hoppe, and N. S. Sariciftci, "Organic solar cells: An overview," Journal of Materials Research, vol. 19, pp. 1924-1945, Jul 2004.
[25]N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, "Photoinduced electron transfer from a conducting polymer to buckminsterfullerene," Science, vol. 258, pp. 1474-1476, November 27, 1992 1992.
[26]J. Nelson, "Organic photovoltaic films," Current Opinion in Solid State and Materials Science, vol. 6, pp. 87-95, 2002.
[27]R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Frechet, and M. F. Toney, "Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight," Macromolecules, vol. 38, pp. 3312-3319, 2005.
[28]V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, "Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells," Journal of Applied Physics, vol. 94, pp. 6849-6854, 2003.
[29]陳壽安, "導電高分子:新世代光電材料," 物理雙月刊, vol. 23, pp. 312-323, 2001.
[30]H.-K. Kim, J.-A. Jeong, K.-H. Choi, S.-W. Jeong, and J.-W. Kang, "Characteristics of flexible ITO electrodes grown by continuous facing target roll-to-roll sputtering for flexible organic solar cells," Electrochemical and Solid-State Letters, vol. 12, pp. H169-H172, 2009.
[31]L. J. Guo, and S. H. Ahn, "High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates," Advanced Materials, vol. 20, pp. 2044-2049, 2008.
[32]L. Blankenburg, K. Schultheis, H. Schache, S. Sensfuss, and M. Schrodner, "Reel-to-reel wet coating as an efficient up-scaling technique for the production of bulk-heterojunction polymer solar cells," Solar Energy Materials and Solar Cells, vol. 93, pp. 476-483, 2009.
[33]B. A. Gregg, "Excitonic solar cells," The Journal of Physical Chemistry B, vol. 107, pp. 4688-4698, 2003.
[34]A. A. P. Leif, S. R. Lucimara, and I. Olle, "Modeling photocurrent action spectra of photovoltaic devices based on organic thin films," Journal of Applied Physics, vol. 86, pp. 487-496, 1999.
[35]D. E. Markov, C. Tanase, P. W. M. Blom, and J. Wildeman, "Simultaneous enhancement of charge transport and exciton diffusion in poly(p-phenylene vinylene) derivatives," Physical Review B (Condensed Matter and Materials Physics), vol. 72, p. 045217, 2005.
[36]S. Scully, P. Armstrong, C. Edder, J. Frechet, and M. McGehee, "Long-range resonant energy transfer for enhanced exciton harvesting for organic solar cells," Advanced Materials, vol. 19, pp. 2961-2966, 2007.
[37]H. Kallmann, and M. Pope, "Photovoltaic effect in organic crystals," The Journal of Chemical Physics, vol. 30, pp. 585-586, 1959.
[38]A. K. Ghosh, and T. Feng, "Merocyanine organic solar cells," Journal of Applied Physics, vol. 49, pp. 5982-5989, 1978.
[39]G. Yu, C. Zhang, and A. J. Heeger, "Dual-function semiconducting polymer devices: Light-emitting and photodetecting diodes," Applied Physics Letters, vol. 64, pp. 1540-1542, 1994.
[40]J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, "Exciton dissociation at a poly(p-phenylenevinylene)/C60 heterojunction," Synthetic Metals, vol. 77, pp. 277-280, 1996.
[41]J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti, and A. B. Holmes, "Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell," Applied Physics Letters, vol. 68, pp. 3120-3122, 1996.
[42]P. Peumans, V. Bulovic, and S. R. Forrest, "Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes," Applied Physics Letters, vol. 76, pp. 2650-2652, 2000.
[43]F. Yang, M. Shtein, and S. R. Forrest, "Controlled growth of a molecular bulk heterojunction photovoltaic cell," Nat Mater, vol. 4, pp. 37-41, 2005.
[44]J.Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, "New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer," Advanced Materials, vol. 18, pp. 572-576, 2006.
[45]J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, "Efficient tandem polymer solar cells fabricated by all-solution processing," Science, vol. 317, pp. 222-225, July 13, 2007 2007.
[46]D. H. Wang, H. K. Lee, D.-G. Choi, J. H. Park, and O. O. Park, "Solution-processable polymer solar cells from a poly(3-hexylthiophene)/[6,6]-phenyl C61-butyric acidmethyl ester concentration graded bilayers," Applied Physics Letters, vol. 95, p. 043505, 2009.
[47]M. Nakamura, C. H. Yang, K. Tajima, and K. Hashimoto, "High-performance polymer photovoltaic devices with inverted structure prepared by thermal lamination," Solar Energy Materials and Solar Cells, vol. 93, pp. 1681-1684, Sep 2009.
[48]M. Aryal, F. Buyukserin, K. Mielczarek, X.-M. Zhao, J. Gao, A. Zakhidov, and W. Hu, "Imprinted large-scale high density polymer nanopillars for organic solar cells," 2008, pp. 2562-2566.
[49]N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, "Semiconducting polymer-buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells," Applied Physics Letters, vol. 62, pp. 585-587, 1993.
[50]G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, "Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions," Science, vol. 270, pp. 1789-1791, December 15, 1995 1995.
[51]S. E. Shaheen, C. J. Brabec, and N. S. Sariciftci, "2.5% efficient organic plastic solar cells," Applied Physics Letters, vol. 78, p. 841, 2001.
[52]F. Padinger, R.S. Rittberger, and N.S. Sariciftci, "Effects of postproduction treatment on plastic solar cells," Advanced Functional Materials, vol. 13, pp. 85-88, 2003.
[53]K. M. Coakley, and M. D. McGehee, "Conjugated polymer photovoltaic cells," Chem. Mater., vol. 16, pp. 4533-4542, 2004.
[54]D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, and D. S. Ginley, "Hybrid photovoltaic devices of polymer and ZnO nanofiber composites," Thin Solid Films, vol. 496, pp. 26-29, 2006.
[55]K. Takanezawa, K. Hirota, Q.-S. Wei, K. Tajima, and K. Hashimoto, "Efficient charge collection with ZnO nanorod array in hybrid photovoltaic devices," The Journal of Physical Chemistry C, vol. 111, pp. 7218-7223, 2007.
[56]D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans, and P. Heremans, "Nanoimprinted semiconducting polymer films with 50 nm features and their application to organic heterojunction solar cells," Nanotechnology, vol. 19, p. 6, Oct 2008.
[57]S. W. Stuart, J. H. Meredith, G. Vignesh, I. K. Ding, Z. Lei, K. Doo-Hyun, L. T. Joseph, M. D. Joseph, D. M. Michael, and T. S. Edward, "A soft lithography route to nanopatterned photovoltaic devices," 2008, p. 70470I.
[58]S. S. Williams, M. J. Hampton, V. Gowrishankar, I. K. Ding, J. L. Templeton, E. T. Samulski, J. M. DeSimone, and M. D. McGehee, "Nanostructured titania-polymer photovoltaic devices made using PFPE-based nanomolding techniques," Chemistry of Materials, vol. 20, pp. 5229-5234, 2008.
[59]K. Myung-Su, K. Jin-Sung, C. Jae Cheol, S. Max, L. J. Guo, and K. Jinsang, "Flexible conjugated polymer photovoltaic cells with controlled heterojunctions fabricated using nanoimprint lithography," Applied Physics Letters, vol. 90, p. 123113, 2007.
[60]S. Baek, J. B. Park, W. Lee, S. H. Han, J. Lee, and S. H. Lee, "A facile method to prepare regioregular poly(3-hexylthiophene) nanorod arrays using anodic aluminium oxide templates and capillary force," New Journal of Chemistry, vol. 33, pp. 986-990, 2009.
[61]A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, "Polymer-based solar cells," Materials Today, vol. 10, pp. 28-33, 2007.
[62]W. Barthlott, and C. Neinhuis, "Purity of the sacred lotus, or escape from contamination in biological surfaces," Planta, vol. 202, pp. 1-8, May 1997.
[63]T. Saison, C. Peroz, V. Chauveau, S. Berthier, E. Sondergard, and H. Arribart, "Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films," Bioinspiration & Biomimetics, vol. 3, p. 5, Dec 2008.
[64]X. Gao, and L. Jiang, "Biophysics: Water-repellent legs of water striders," Nature, vol. 432, pp. 36-36, 2004.
[65]Y. Xia, and G. M. Whitesides, "Soft lithography," Annual Review of Materials Science, vol. 28, pp. 153-184, 1998.
[66]Y. C. Stephen, R. K. Peter, and J. R. Preston, "Imprint of sub-25 nm vias and trenches in polymers," Applied Physics Letters, vol. 67, pp. 3114-3116, 1995.
[67]Y. C. Stephen, R. K. Peter, Z. Wei, G. Lingjie, and Z. Lei, "Sub-10 nm imprint lithography and applications," 1997, pp. 2897-2904.
[68]M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, "Fabrication of nanostructures using a UV-based imprint technique," Microelectronic Engineering, vol. 53, pp. 233-236, 2000.
[69]M. Otto, M. Bender, B. Hadam, B. Spangenberg, and H. Kurz, "Characterization and application of a UV-based imprint technique," Microelectronic Engineering, vol. 57-58, pp. 361-366, 2001.
[70]T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivasan, and C. G. Willson, "Step and flash imprint lithography: Template surface treatment and defect analysis," 2000, pp. 3572-3577.
[71]M. W. Lin, B. Chao, J. J. Hao, K. Osberg, P. S. Ho, and C. G. Willson, "Simulation and design of planarizing materials for reverse-tone step and flash imprint lithography," Journal of Micro-Nanolithography Mems and Moems, vol. 7, p. 19, Apr-Jun 2008.
[72]C. Goh, K. M. Coakley, and M. D. McGehee, "Nanostructuring titania by embossing with polymer molds made from anodic alumina templates," Nano Lett., vol. 5, pp. 1545-1549, 2005.
[73]J. P. Rolland, B. W. Maynor, L. E. Euliss, A. E. Exner, G. M. Denison, and J. M. DeSimone, "Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials," Journal of the American Chemical Society, vol. 127, pp. 10096-10100, 2005.
[74]L. Chen, P. Degenaar, and D. D. C. Bradley, "Polymer transfer printing: Application to layer coating, pattern definition, and diode dark current blocking," Advanced Materials, vol. 20, pp. 1679-1683, 2008.
[75]T. A. M. Ferenczi, J. Nelson, C. Belton, A. M. Ballantyne, M. Campoy-Quiles, F. M. Braun, and D. D. C. Bradley, "Planar heterojunction organic photovoltaic diodes via a novel stamp transfer process," 2008.
[76]K.-H. Yim, Z. Zheng, Z. Liang, R. H. Friend, W. T. S. Huck, and J.-S. Kim, "Efficient conjugated-polymer optoelectronic devices fabricated by thin-film transfer-printing technique," Advanced Functional Materials, vol. 18, pp. 1012-1019, 2008.
[77]J. H. Huang, Z. Y. Ho, T. H. Kuo, D. Kekuda, C. W. Chu, and K. C. Ho, "Fabrication of multilayer organic solar cells through a stamping technique," Journal of Materials Chemistr, vol. 19, pp. 4077-4080, 2009.
[78]H. Kim, B. Yoon, J. Sung, D. G. Choi, and C. Park, "Micropatterning of thin P3HT films via plasma enhanced polymer transfer printing," Journal of Materials Chemistry, vol. 18, pp. 3489-3495, 2008.
[79]F.-C. Chen, Y.-K. Lin, and C.-J. Ko, "Submicron-scale manipulation of phase separation in organic solar cells," Applied Physics Letters, vol. 92, p. 023307, 2008.
[80]C. F. Shih, K. T. Hung, J. W. Wu, C. Y. Hsiao, and W. M. Li, "Efficiency improvement of blended poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 solar cells by nanoimprinting," Applied Physics Letters, vol. 94, pp. 143505-3, 2009.
[81]葛祖榮 and 陳方中, "有機高分子太陽能電池發展現況," 奈米通訊, vol. 14, pp. 44-52, 2007.
[82]H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, "Two-dimensional charge transport in self-organized, high-mobility conjugated polymers," Nature, vol. 401, pp. 685-688, 1999.
[83]G. Li, V. Shrotriya, Y. Yao, and Y. Yang, "Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)," Journal of Applied Physics, vol. 98, p. 043704, 2005.
[84]W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, "Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology," Advanced Functional Materials, vol. 15, pp. 1617-1622, 2005.
[85]X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, "Nanoscale morphology of high-performance polymer solar cells," Nano Lett., vol. 5, pp. 579-583, 2005.
[86]R.-R. Marisol, K. Kyungkon, and L. C. David, "High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends," Applied Physics Letters, vol. 87, p. 083506, 2005.
[87]A. L. Ayzner, D. D. Wanger, C. J. Tassone, S. H. Tolbert, and B. J. Schwartz, "Room to improve conjugated polymer-based solar cells: Understanding how thermal annealing affects the fullerene component of a bulk heterojunction photovoltaic device," The Journal of Physical Chemistry C, vol. 112, pp. 18711-18716, 2008.
[88]J. Jo, S.-I. Na, S.-S. Kim, T.-W. Lee, Y. Chung, S.-J. Kang, D. Vak, and D.-Y. Kim, "Three-dimensional bulk heterojunction morphology for achieving high internal quantum efficiency in polymer solar cells," Advanced Functional Materials, vol. 19, pp. 2398-2406, 2009.
[89]L. Goris, A. Poruba, A. Purkrt, K. Vandewal, A. Swinnen, I. Haeldermans, K. Haenen, J. V. Manca, and M. Vanecek, "Optical absorption by defect states in organic solar cells," Journal of Non-Crystalline Solids, vol. 352, pp. 1656-1659, 2006.
[90]Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, "Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene," Applied Physics Letters, vol. 86, p. 3, Feb 2005.
[91]Y. Kim, S. Choulis, J. Nelson, D. Bradley, S. Cook, and J. Durrant, "Composition and annealing effects in polythiophene/fullerene solar cells," Journal of Materials Science, vol. 40, pp. 1371-1376, 2005.
[92]A.-I. Maher, A. Oliver, S. Steffi, and G. Gerhard, "Effects of solvent and annealing on the improved performance of solar cells based on poly(3-hexylthiophene): Fullerene," Applied Physics Letters, vol. 86, p. 201120, 2005.
[93]C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, "Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact," Applied Physics Letters, vol. 89, p. 233517, 2006.
[94]H.-J. Her, W.-H. Baek, H. H. Lee, C. J. Kang, Y.-S. Kim, and et al., "Influence of titania thin film morphology on the photovoltaic action of hybrid titania-P3HT solar cell," Journal of Physics: Conference Series, vol. 100, p. 082020, 2008.
[95]M. Hiramoto, M. Suezaki, and M. Yokoyama, "Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell," Chemistry Letters, vol. 19, pp. 327-330, 1990.
[96]M. Hiramoto, H. Fujiwara, and M. Yokoyama, "p-i-n like behavior in three-layered organic solar cells having a co-deposited interlayer of pigments," Journal of Applied Physics, vol. 72, pp. 3781-3787, 1992.
[97]J. Drechsel, B. Mannig, F. Kozlowski, D. Gebeyehu, A. Werner, M. Koch, K. Leo, and M. Pfeiffer, "High efficiency organic solar cells based on single or multiple PIN structures," Thin Solid Films, vol. 451-452, pp. 515-517, 2004.
[98]T. Taima, M. Chikamatsu, Y. Yoshida, K. Saito, and K. Yase, "Effects of intrinsic layer thickness on solar cell parameters of organic p-i-n heterojunction photovoltaic cells," Applied Physics Letters, vol. 85, pp. 6412-6414, 2004.
[99]J. Drechsel, B. Mannig, F. Kozlowski, M. Pfeiffer, K. Leo, and H. Hoppe, "Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers," Applied Physics Letters, vol. 86, p. 244102, 2005.
[100]C. M. Ramsdale, J. A. Barker, A. C. Arias, J. D. MacKenzie, R. H. Friend, and N. C. Greenham, "The origin of the open-circuit voltage in polyfluorene-based photovoltaic devices," Journal of Applied Physics, vol. 92, pp. 4266-4270, 2002.
[101]A. K. Pandey, P. E. Shaw, I. D. W. Samuel, and J.-M. Nunzi, "Effect of metal cathode reflectance on the exciton-dissociation efficiency in heterojunction organic solar cells," Applied Physics Letters, vol. 94, p. 103303, 2009.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top