|
References 1.Chen, Y. and G. Varani, Protein families and RNA recognition. FEBS Journal, 2005. 272(9): p. 2088-2097. 2.Lunde, B., C. Moore, and G. Varani, RNA-binding proteins: modular design for efficient function. Nature Reviews Molecular Cell Biology, 2007. 8(6): p. 479-490. 3.Boeckmann, B., et al., The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic acids research, 2003. 31(1): p. 365. 4.Berman, H., et al., The protein data bank. Acta Crystallographica Section D: Biological Crystallography, 2002. 58(6): p. 899-907. 5.Cheng, C.W., et al., Predicting RNA-binding sites of proteins using support vector machines and evolutionary information. BMC Bioinformatics, 2008. 9 Suppl 12: p. S6. 6.Perez-Cano, L. and J. Fernandez-Recio, Optimal protein-RNA area, OPRA: a propensity-based method to identify RNA-binding sites on proteins. Proteins, 2009. 78(1): p. 25-35. 7.Caragea C, S.J., Dobbs D, Honavar V, Assessing the Performance of Macromolecular Sequence Classifiers. , in IEEE 7th International Symposium on Bioinformatics and Bioengineering. 2007. p. 320-326. 8.Vapnik, V., The nature of statistical learning theory. 2000: Springer Verlag. 9.Hsu, C., WildSpan: Mining Discontinuous Motif in Protein Sequences, in Department of Computer Science and Engineering. 2007, Yuan Ze University. 10.Crick, F., Central dogma of molecular biology. Nature, 1970. 227(5258): p. 561-563. 11.Betts, M. and R. Russell, Amino-Acid Properties and Consequences of Substitutions. Bioinformatics for geneticists: a bioinformatics primer for the analysis of genetic data, 2007: p. 311. 12.Shazman, S. and Y. Mandel-Gutfreund, Classifying RNA-binding proteins based on electrostatic properties. PLoS Comput Biol, 2008. 4(8): p. e1000146. 13.Shen, J., et al., Predicting protein–protein interactions based only on sequences information. Proceedings of the National Academy of Sciences, 2007. 104(11): p. 4337. 14.Altschul, S., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, 1997. 25(17): p. 3389. 15.Bryson, K., et al., Protein structure prediction servers at University College London. Nucleic acids research, 2005. 33(Web Server Issue): p. W36. 16.Cortes, C. and V. Vapnik, Support-vector networks. Machine learning, 1995. 20(3): p. 273-297. 17.Chang, C. and C. Lin, LIBSVM: a library for support vector machines, 2001. Software available at http://www. csie. ntu. edu. tw/cjlin/libsvm, 2001. 18.Hsu, C., et al., Efficient discovery of structural motifs from protein sequences with combination of flexible intra-and inter-block gap constraints. Advances in Knowledge Discovery and Data Mining: p. 530-539. 19.Jeong, E., I. Chung, and S. Miyano, A neural network method for identification of RNA-interacting residues in protein. GENOME INFORMATICS SERIES, 2004: p. 105-116. 20.Jeong, E. and S. Miyano, A weighted profile based method for protein-RNA interacting residue prediction. Lecture notes in computer science, 2006. 3939: p. 123. 21.Wang, L. and S. Brown. Prediction of RNA-binding residues in protein sequences using support vector machines. 2006. 22.Wang, L. and S. Brown, BindN: a web-based tool for efficient prediction of DNA and RNA binding sites in amino acid sequences. Nucleic acids research, 2006. 34(Web Server issue): p. W243. 23.Kim, O., K. Yura, and N. Go, Amino acid residue doublet propensity in the protein-RNA interface and its application to RNA interface prediction. Nucleic acids research, 2006. 24.Terribilini, M., et al., Prediction of RNA binding sites in proteins from amino acid sequence. Rna, 2006. 12(8): p. 1450. 25.Tong, J., P. Jiang, and Z. Lu, RISP: A web-based server for prediction of RNA-binding sites in proteins. Computer methods and programs in biomedicine, 2008. 90(2): p. 148-153. 26.Wang, Y., et al., PRINTR: prediction of RNA binding sites in proteins using SVM and profiles. Amino Acids, 2008. 35(2): p. 295-302. 27.Kumar, M., M.M. Gromiha, and G.P. Raghava, Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins, 2008. 71(1): p. 189-94. 28.Spriggs, R.V., et al., Protein function annotation from sequence: prediction of residues interacting with RNA. Bioinformatics, 2009. 25(12): p. 1492-7. 29.Maetschke, S.R. and Z. Yuan, Exploiting structural and topological information to improve prediction of RNA-protein binding sites. BMC Bioinformatics, 2009. 10: p. 341. 30.Dondoshansky, I., Blastclust (NCBI Software Development Toolkit). NCBI, Bethesda, Md, 2002. 31.Wang, G. and R. Dunbrack Jr, PISCES: a protein sequence culling server. Bioinformatics, 2003. 19(12): p. 1589. 32.Terribilini, M., et al., RNABindR: a server for analyzing and predicting RNA-binding sites in proteins. Nucleic Acids Res, 2007. 35(Web Server issue): p. W578-84. 33.Van Rijsbergen, C., Information retrieval, chapter 7. Butterworths, London, 1979. 2: p. 111–143. 34.Perez-Cano, L. and J. Fernandez-Recio, Optimal protein-RNA area, OPRA: A propensity-based method to identify RNA-binding sites on proteins. Proteins: Structure, Function, and Bioinformatics, 2009. 78(1): p. 25-35. 35.FAUCHERE, J., et al., Amino acid side chain parameters for correlation studies in biology and pharmacology. International Journal of Peptide and Protein Research, 2009. 32(4): p. 269-278. 36.Larranaga, P., et al., Machine learning in bioinformatics. Briefings in bioinformatics, 2006.
|