(54.236.58.220) 您好!臺灣時間:2021/02/27 11:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉美倫
研究生(外文):Mei-Lun Yeh
論文名稱:香蕉 ACC 氧化酶基因默化轉殖株分析
論文名稱(外文):Silencing Analysis of 1- Aminocyclopropane-1-Carboxylate Oxidase Genes in Transgenic Banana
指導教授:黃鵬林
指導教授(外文):Pung-Ling Huang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:59
中文關鍵詞:ACC氧化酶ACC氧化酶ACC氧化酶ACC氧化酶ACC氧化酶
外文關鍵詞:ACC oxidaseBananaRNA inferenceT-DNAsiRNA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
更年性果實中乙烯生理作用是由系統一和系統二所構成,系統一主要於營養生長時期及果實中表現,提供一般生理用的微量乙烯;而系統二為更年性果實與花器老化所特有,系統一能產生微量乙烯誘發系統二表現。本研究應用 RNA 干擾的策略並藉由農桿菌轉殖法,取得默化 Mh-ACO1 和 Mh-ACO2 香蕉轉殖株。經 GUS 活性組織化學染 色分析與南方氏雜交,確認 T-DNA 均完全嵌入香蕉染色體中。默化 Mh-ACO1 及默化Mh-ACO2 之北蕉轉殖株與未轉殖株相比,生長速度及下位葉片萎凋速度均較慢。
進一步以北方雜交分析轉殖株,了解 Mh-ACO1 和 Mh-ACO2 於轉殖北蕉之葉片、創傷處理與果實表現情形。分析結果顯示 Mh-ACO1 於葉片、創傷處理與果實中均有表現,Mh-ACO2 僅於創傷處理與果實表現,且Mh-ACO1 和 Mh-ACO2 隨著果實後熟程度的增加,表現量也隨之增強。而默化 Mh-ACO1 或 Mh-ACO2 基因之北蕉轉殖株,均會影響另一 ACC 氧化酶基因表現。默化 Mh-ACO1 轉殖株創傷葉片,以Mh-ACO1 cDNA 為探針可偵測到介於 21-25 nt siRNA;於默化 Mh-ACO2 後熟果實中,亦可以 Mh-ACO2 cDNA為探針可偵測到介於 21-25 nt siRNA 表現,顯示默化構築默化構築 pBI121-1AnS 與 pBI121-2AnS 能有效啟動 RNAi 的機制,有效且專一的默化北蕉中 Mh-ACO1 與 Mh-ACO2 表現。
利用 IPCR (Inverse Polymerase Chain Reaction) 與 APCR (Anchored Polymerase Chain Reaction) 分析默化轉殖株邊界序列,從 Mh-ACO1 轉殖株品系 1AS-1 與1AS-25 取得二段默化 T-DNA 左邊界序列;及 Mh-ACO2 轉殖品系 2AS-1 與 2AS-79 中,取得三段 T-DNA 左邊界序列。2AS-1、1AS-25、與 2AS-79 中嵌入染色體的四段左邊界序列中,帶有全長或部分左邊界保守序列,左邊界保守序列出現 26 bp、23 bp 、19 bp 與 16 bp,而 1AS-1 不帶有左邊界保守序列。 2AS-1 與 2AS-79 所嵌入之邊緣序列都帶有非 T-DNA 載體序列,且部分左邊界序列接有右邊界非 T-DNA 載體序列,顯示農桿菌侵染植物細胞的過程中,會帶入部分非 T-DNA 載體序列,且發生重組或刪除 DNA 的現象。


Ethylene biosynthesis in climacteric plants is regulated by two systems. System 1 functions during normal vegetative growth and is responsible for producing the basal levels of ethylenedetected in all tissues including mature fingers before the onset of fruit ripening. System 2initiates during the ripening of climacteric fruit when ethylene is auto-stimulatory. In this study we examine the regulation of ACO gene family of banana. In banana, two transcripts corresponding to Mh-ACO1 and Mh-ACO2 have been identified. RNAi (RNA interference) strategy was employed to knock down either of the two ACO genes to elucidate their functions. Agrobacterium-mediated transformation was used to produce the Mh-ACO1 or Mh-ACO2 silenced transgenic plants. β-glucuronidase (GUS) activity and Southern blot analysis indicated that the T-DNA was inserted into genomic DNA. Most transgenic plants carried a multiple number of inserts. The growth rate and lower leaves wilting of ACO silenced transgenic plants were slower than Un transgenic plant.
The transcript levels of the two ACO genes of wounded leaves and fruits in the transgenic and Un transgenic plant, were examined using Northern blot analysis. The data indicated that Mh-ACO1 expresses constitutively whereas Mh-ACO2 expresses only in wounded leaves and fruits from Un transgenic plant. No matter Mh-ACO1 or Mh-ACO2 silencing, it affects the performance of the other ACC oxidase gene. We can detect the range of 21-25 nt siRNA in Mh-ACO1 silenced wounded leaves and Mh-ACO2 silenced ripening banana fruits. The results showed that silenced construct pBI121-1AnS and pBI121-2AnS can inhibit Mh-ACO1 and Mh-ACO2 in banana plant specifically by RNAi mechanism.
The integration of T-DNA border regions were determined by IPCR (Inverse Polymerase Chain Reaction) and APCR (Anchored Polymerase Chain Reaction). We got five left border region fragments from transgenic plants 1AS-1, 1AS-25, 2AS-1 and 2AS-79. Transgenic plant 2AS-1, 1AS-25 and 2AS-79 contained part of left border consensus sequence and transgenic plant 1AS-1 had no consensus sequence. The integration of T-DNA border regions of 2AS-79 and 2AS-1 had Un-T-DNA vector sequences. The results showed that T-DNA complex integrated into plant genome will carry some Un-T-DNA vector sequences. Furthermore, recombination and deletion of T-DNA may also occur during this integration process.


目錄
中文摘要 I
Abstract II
壹、 前言 1
貳、 前人研究
一、乙烯於植物生理反應與生合成途徑
(一)乙烯於植物生理影響 2
(二)植物更年性生理表現 2
(三)香蕉果實後熟相關基因與乙烯生理研究 3
二、ACC oxidase特性與基因研究 4
三、RNAi (RNA interference) 原理與應用 6
四、農桿菌 T-DNA 嵌入植物基因組之邊緣序列分析
(一)農桿菌 T-DNA 嵌入植物基因組之原理及其影響 7
(二) T-DNA 嵌入植物染色體組位置之分析策略 8
參、 材料與方法
一、植物材料 10
二、試驗方法
(一)GUS活性組織化學染色分析 10
(二)石蠟切片 10
(三)植物基因組 DNA 之抽取 10
(四)植物基因組 RNA 之抽取 10
(五)南方氏雜交分析 11
(六)北方雜交分析 13
(七)小片段 RNA 北方雜交分析 14
(八) IPCR (Inverse Polymerase Chain Reaction) 14
(九) APCR (Anchored Polymerase Chain Reaction) 15
(十)香蕉葉片創傷試驗 16
肆、 結果
一、轉殖株分子驗證 17
二、石蠟切片組織學觀察 18
三、默化 Mh-ACO1 與默化 Mh-ACO2 轉殖北蕉生長情形 18
四、Mh-ACO1 與 Mh-ACO2 於不同北蕉轉殖株之差異性基因表現
18
五、香蕉 ACC 氧化酶基因於創傷逆境表現 18
六、默化 ACC 氧化酶基因於創傷逆境之 siRNA 表現 19
七、ACC氧化酶基因於默化 Mh-ACO2轉殖株之果實不同後熟時期
表現 19
八、ACC氧化酶基因於默化 Mh-ACO2轉殖株後熟果實之siRNA表現
20
九、ACC 氧化酶默化轉殖株 T-DNA 邊界序列分析 20
伍、 討論
一、默化 Mh-ACO1 與默化 Mh-ACO2 轉殖株外表型差異 44
二、ACC氧化酶基因於不同默化 Mh-ACO1 與默化 Mh-ACO2轉殖株葉
片表現 45
三、ACC氧化酶基因於默化 Mh-ACO1 與默化 Mh-ACO2轉殖株葉片創傷逆
境表現 45
四、ACC氧化酶基因於默化 Mh-ACO2轉殖株果實不同後熟時期表現46
五、siRNA 於乙烯生理表現情形47
六、ACC 氧化酶默化轉殖株T-DNA邊界序列分析 48
陸、 結語 50
柒、 參考文獻 51


圖表目錄
圖一、香蕉轉殖默化 Mh-ACO1 表現質體 pBI121-1AnS 之香蕉(Musa ‘Pei Chiao’,
AAA group) 擬轉殖株葉片 GUS 活性組織化學染色分析。 22
圖二、北蕉默化 Mh-ACO1 轉殖株以 GUS 為探針之南方氏雜交分析。 23
圖三、北蕉默化 Mh-ACO1 轉殖株以 Mh-ACO1 為探針之南方氏雜交分析。 24
圖四、北蕉默化 Mh-ACO2 轉殖株以 GUS 為探針之南方氏雜交分析。 25圖五、北蕉默化 Mh-ACO2 轉殖株以 NPT ΙΙ 為探針之南方氏雜交分析。 26
圖六、以石蠟切片分析非轉殖株北蕉、Mh-ACO1 RNAi 2 與 Mh-ACO2 RNAi
79 葉片構造。 27
圖七、香蕉轉殖默化 Mh-ACO1 表現載體 pBI121-1AnS 擬轉殖癒傷組織再生
情形 28
圖八、香蕉 (Musa ‘Pei Chiao’, AAA group) 轉殖默化 Mh-ACO1 表現質體
pBI121-1AnS 的植株葉片形態觀察。 29
圖九、未轉殖株與默化 ACC 氧化酶基因之轉殖香蕉 (Musa ‘Pei Chiao’, AAA
group) 於精密溫室生長情形。 30
圖十、Mh-ACO1 RNAi 轉殖株葉片之 Mh-ACO1 與 Mh-ACO2 基因表現分析。 31
圖十一、Mh-ACO2 RNAi 轉殖株葉片之 Mh-ACO1 與 Mh-ACO2 基因表現分析 32
圖十二、創傷 Mh-ACO1 RNAi 2、 Mh-ACO2 RNAi 79 轉殖株與未轉殖株葉片之
Mh-ACO1 與 Mh-ACO2 基因表現分析。 33
圖十三、Mh-ACO1 RNAi 2 與 Mh-ACO2 RNAi 79 轉殖株創傷處理後 Mh-ACO1 基因之 siRNA 表現情形。 34
圖十四、Mh-ACO1 RNAi 2 與 Mh-ACO2 RNAi 79 轉殖株創傷處理後 Mh-ACO2 基因之 siRNA 表現情形。 35
圖十五、Mh-ACO2 RNAi 79 轉殖果實於不同後熟程度之 Mh-ACO1 與 Mh-ACO2 基因表現。 36
圖十六、Mh-ACO2 RNAi 79 轉殖株果實於不同後熟程度 Mh-ACO1 與 Mh-ACO2 基因表現之定量。 37
圖十七、Mh-ACO2 RNAi 79 (Musa ‘Pei Chiao’, AAA group) 轉殖株後熟香果實之 Mh-ACO1 siRNA 表現情形。 38
圖十八、Mh-ACO2 RNAi 79 (Musa ‘Pei Chiao’, AAA group) 轉殖株後熟果實之Mh-ACO2 siRNA 表現情形。 39
圖十九、默化 Mh-ACO1 與 Mh-ACO2 轉殖香蕉 (Musa ‘Pei Chiao’, AAA
group) 之T-DNA 嵌入染色體邊界序列分析 40
表一、香蕉組織培養之培養基 41
表二、分析 T-DNA 邊界所用引子與連結子序列。 42
表三、默化 Mh-ACO1、默化 Mh-ACO2 與香蕉未轉殖株之外表形態差異。 43


廖育辰. 2008. 香蕉ACC氧化酶基因默化轉殖之研究. 國立台灣大學園藝學研究所碩士論文.
李盛新. 2006. 香蕉 ACC 氧化酶基因啟動子活性分析與默化質體之轉殖. 國立台灣大學園藝學研究所碩士論文.
林宜佑. 2004. 應用 RNA 干擾技術抑制香蕉 ACC 氧化酶基因表現之研究. 國立台灣大學園藝學研究所碩士論文.
賴信忠. 1997. 香蕉ACC氧化酶基因載體表達與純化及生化特性分析. 國立台灣大學園藝學研究所碩士論文.
張唐維. 1994. 香蕉乙烯形成酶 cDNA 之選殖及分析. 國立台灣大學園藝學研究所碩士論文.
An, S., S. Park, D. H. Jeong, D. Y. Lee, H. G. Kang, J. H. Yu, J. Hur, S. R. Kim, Y. H. Kim, M. Lee, S. Han, S. J. Kim, J. Yang, E. Kim, S. J. Wi, H. S. Chung, J. P. Hong, V. Choe, H. K. Lee, J. H. Choi, J. Nam, S. R. Kim, P. B. Park, K. Y. Park, W. T. Kim, S. Choe, C. B. Lee and G. An. 2003. Generation and analysis of end sequence database for T-DNA tagging plants in rice. Plant Physiol. 133:2040–2047.
Arnold, C. and I. J. Hodgson. 1991. Vectorette PCR: a novel approach to genomic walking. PCR Methods Appl. 1:39-42.
Argueso, C. T., M. Hansen, J. J. Kieber. 2007. Regulation of ethylene biosynthesis. J Plant Growth Reg. 26:92–105.
Balzergue, S., B. Dubreucq, S. Chauvin, I. Le-Clainche, F. Le-Boulaire, R. De-Rose, F. Samson, V. Biaudet, A. Lecharny, C. Cruaud, J. Weissenbach, M. Caboche and L. Lepiniec. 2001. Improved PCR-walking for large-scale isolation of plant T-DNA borders. BioTechniques 30:496–504.
Balague, C., C. F. Watson, A. J. Turner, P. Rouge, S. Picton, J. C. Pech, and D. Grierson. 1993. Isolation of a ripening and wound-induced cDNA from Cucumis melo L, encoding a protein with homology to the ethylene-forming enzyme. Eur J Biochem. 212 27–34.
Bapat, V. A., P. K. Trivedi, A. Ghosh, V. A. Sane , T. R. Ganapathi, and P. Nath. 2010. Ripening of fleshy fruit: Molecular insight and the role of ethylene. Biotechnol. Adv. 28 94–107.
Barry, C. S., B. Blume, M. Bouzayen, W. Cooper, A.J. Hamilton, and D.Grierson. 1996. Differential expression of the 1-aminocyclopropane- 1-carboxylate oxidase gene family of tomato. Plant J. 9: 525–535.
Becker, D. K., B. Dugdale, M. K. Smith, R. M. Harding, and J. L. Dale. 2000. Genetic transformation of Cavendish banana (Musa spp. AAA group) cv ‘Grand Nain‘ via microprojectile bombardment. Plant Cell Rep. 19: 229-234.
Ben, A. M., B. Flores, A. Latché, M. Bouzayen, J. C. Pech, and F. Romojaro. 1999. Inhibition of ethylene biosynthesis by antisense ACC oxidase RNA prevents chilling injury in Charentais cantaloupe melons. Plant Cell Environ. 22: 1579-1586.
Bernstein, E., A. A. Caudy, S. M. Hammond, and G. J. HanUn. 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363-366.
Biale, J. B. 1960. Respiration of fruits. Encycl. Plant Physiol. 12:537-592.
Burg, S. P. and E. A. Burg. 1965. Ethylene action and the ripening of fruits. Science 148: 1190-1196.
Burg, S. P. 1962. The physiology of ethylene formation. Annu. Rev. Plant Physiol. 13: 265-302.
CSIRO. 1972. Banana ripening guide. Div Food Res., Circular 8:1-12.
Dandekar, A., Gianni T., Bruno G. D., Sandra L. U., Andrew J. P., Adel A. K., John R. S., Richard J. C. and David J. J. 2004. Effect of down-regulation of ethylene biosynthesis on fruit flavor complex in apple fruit. Transgenic Res. 13: 373–384.
Dean, C., J. Jones, M. Favreau., P. Dunsmuir, and J. Bedbrook. 1988. Influence of flanking sequences on variability in expression levels of an introduced gene in transgenic tobacco plants. Nucl Acids Res. 16:9267-9283.
Dellaporta, S. L., J. Wood, and J. B. Hicks. 1983. A plant DNA minipreparation: Version Ⅱ. Plant Mol Biol Rep. 1: 19-21.
Deroles, S. C. and R. C. Gardner. 1988. Analysis of the T-DNA structure in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Mol Biol. 11:365–377.
Do, Y. Y., T. S. Thay, T. W. Chang and P. L. Huang. 2005. Molecular cloning and characterization of a novel 1-aminocyclopropane-1-carboxylate oxidase gene involved in ripening of banana fruits. J. Agri. Food Chem. 53: 8239-8247.
Dong, J. G., W. T. Kim, W. K. Yip, G. A. Thompson, L. Li, A. B. Bennet and S. F. Yang. 1991. Cloning of cDNA encoding 1-aminocyclopropane-1-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta 185: 38-45.
Dong, J. G., D. Olson, A. Silverstone, and S. F. Yang. 1992. Sequence of a cDNA coding for a 1-aminocyclopropane-1- carboxylate oxidase homolog from apple fruit. Plant Physiol. 98:1530-1531.
Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 137:266-7.
Francia, D., D. Demaria, O. Calderini, L. Ferraris, D. Valention, S. Arcioni, G. Tamietti and F. Cardinale. 2007. Wounding induces resistance to pathogens with different lifestyles in tomato: role of ethylene in cross-protection. Plant Cell Environ. 30:1357–1365.
Flores, F., M. C. Martinez-Madrid, F. J. Sanchez-Hidalgo, and F. Romojaro. 2001. Differential rind and pulp ripening of transgenic antisense ACC oxidase melon. Plant Physiol Biochem. 39:37–43.
Gendloff, E. H., B. Bowen, and W. G. Buchholz. 1990. Quantitation of chloramphenicol acetyl transferase in transgenic tobacco plants by ELISA and correlation with gene copy number. Plant Mol Biol. 14:575-583.
Glazebrook, J, W. Chen, B. Estes, H. S. Chang, C. Nawrath, J. P. Métraux , T. Zhu, and F. Katagiri. 2003. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J. 34:217–28.
Goto, K., A. Kanazawa, M. Kusaba, and C. Masuta. 2003. A simple and rapid method to
detect plant siRNAs using Unradioactive probes. PMBR. 21: 51–58.
Grierson, D., A. Slater, J. Speirs, and G. A. Tucker. 1985. The appearance of polygalacturonase messenger-RNA in tomatoes - one of a series of changes in gene- expression during development and ripening. Planta 163: 263-271.
Hamilton, A. J., M. Bouzayen and D. Grierson. 1991. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc. Natl. Acad. Sci. USA 88: 7434-7437.
Hanson, B., D. Engler, Y. Moy, B. Newman, E. Ralston and N. Gutterson. 1999. A simple method to enrich an Agrobacterium-transformed population for plants containing only T-DNA sequences. Plant J. 19: 727–734.
Herrera-Estrella, L. 1983. Transfer and expression of foreign genes in plants. PhD thesis. Laboratory of Genetics, Gent University, Belgium.
Hobbs, S. L. A., P. Kpodar, and C. M. O. D. Long. 1990. The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol. 15:851-864.
Hobbs, S. L.A., T. D. Warkentin, and C. M. O. DeLong. 1993. Transgene copy number can be positively or negatively associated with transgene expression. Plant Molecular Biology 21: 17-26.
Huang, F. C., Y. Y. Do and P. L. Huang. 2006. Genomic organization of a diverse ACC synthase gene family in banana and expression characteristics of the gene member involved in ripening of banana fruits. J. Agri. Food Chem. 54: 3859-3868.
Hudgins, J. W., S. G. Ralph, V. R. Franceschi and J. Bohlmann. 2006. Ethylene in induced conifer defense: cDNA cloning, protein expression, and cellular and subcellular localization of 1-aminocyclopropane-1- carboxylate oxidase in resin duct and phenolic parenchyma cells. Planta 224: 865-877.
Inaba A., and R. Nakamura. 1986. Effect of exogenous ethylene concentration and fruit temperature on the minimum treatment time necessary to induce ripening in banana fruit. J. Japan. Soc. Hort. Sci. 55: 348—354.
Inaba, A. X. Liu, N. Yokotani, M. Yamane, W. J. Lu, R. Nakano and Y. Kubo. 2007. Different feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit. J. Exp. Bot. 58:1047-1057.
Jefferson, R. A., T. A. Kavanagh, and M. W. Bevan. 1987. GUS fusion: -glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 13: 3901-3907.
Jones, J. D. G., D.E. Gilbert, K. L. Grady, R. A. Jorgensen. 1987. T-DNA structure and gene expression in petunia plants transformed by Agrobacterium tumefaciens C58 derivatives. Mol Gen Genet 207:478-485.
Kao, C. H., and S. F. Yang. 1982. Light inhibition of the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in leaves is mediated through carbon-dioxide. Planta 155: 261-266.
Kidd, F., and C. West. 1930. Physiology of fruit. I. Changes in the respiratory activity in apples during their senescence at different temperatures. Proc. Roy. Soc. London. Ser. B 106:93-109.
Kononov, M. E., B. Bassuner and S. B. Gelvin. 1997. Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J. 11:945–957.
Kunkel, B.N., and D. M. Brooks. 2002. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 5:325–31.
Leoni, C., G. Raffaele, and R. L. Ceci. 2008. A genome walking strategy for the identification of eukaryotic nucleotide sequences adjacent to known regions. BioTechniques 44:229-235.
Liu,Y. G., N. Mitsukawa, T. Oosumi, and R. F. Whitter. 1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8:457-463.
Liu, Y., N. E. Hoffman and S. F. Yang. 1985. Promotion by ethylene of the capability to convert 1-aminocyclopropane-1-carboxylic acid to ethylene in preclimacteric tomato and cantaloupe fruits. Plant Physiol. 77:407-411.
Liu X., S. Shiomi, A. Nakatsuka, Y. Kubo, R. Nakamura, and A. Inaba. 1999. Characterization of ethylene biosynthesis associated with ripening in banana fruit. Plant Physiol. 121:1257–1265.
Loon, L. C., B. P. J. Geraats and H. J.M. Linthorst. 2006. Ethylene as a modulator of disease resistance in plants. Trends Plant Sci. 11:184-191.
López-Gómez, R., A. Campbell, J. G. Dong, S. F. Yang, and M. A. Gomez-Lim. 1997. Ethylene biosythesis in banana fruit: Isolation of a genomic clone to ACC oxidase and expression studies. Plant Sci. 123:123-131.
López-Gómez, R., F. Morales-Domínguez, O. Mendoza Alcázar, and M. A. Gómez-Lim. 2004. Identification of a genomic clone to ACC oxidase from papaya (Carica papaya L.) and expression studies. J Agric Food Chem. 52:794-800.
López-Gómez, R., L. Jose Cabrera-Ponce, L. J. Saucedo-Arias, L. Carreto-Montoya, R. Villanueva-Arce, and J. C. Díaz-Perez. 2009. Ripening in papaya fruit is altered by ACC oxidase cosuppression. Trans Res. 18:89–97.
Matzke M., A. J. Matzke and J. M. Kooter. 2001. RNA: guiding gene silencing. Science 293: 1080-1083.
Mathooko, F. M., Y. Tsunashima, W. Z. O. Owino, Y. Kubo, A. Inaba. 2001. Regulation of genes encoding ethylene biosynthetic enzymes in peach (Prunus persica L.) fruit by carbon dioxide and 1-methylcyclopropene. Postharvest Biol Technol. 21: 265-281.
Mathooko F. M., Y. Tsunashima, Y. Kubo and A. Inaba. 2004. Expression of a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene in peach (Prunus persica L.) fruit in response to treatment with carbon dioxide and 1-methylcyclopropene: possible role of ethylene. A. J. B. 3:497-502.
Meza, T. J., B. Stangeland, I. S. Mercy, M. Skarn, D. A. Nymoen, A. Berg, M. A. Butenko, A. M. Hakelien, C. Haslekas, L. A. Meza-Zepeda and R. B. Aalen. 2002. Analyses of single-copy Arabidopsis T-DNA-transformed plants show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencing. Nucleic Acids Res. 30:4556–4566.
McMaster, G. K, and G. G. Carmichael. Analysis of single and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. 1977. Proc Natl Acad Sci U S A. 74:4835–4838.
McMurchie, E. J., W. B. McGlasson, and I. L. Eaks. 1972. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature 273:235-236.
Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473-497.
Myrick, K. V., and W. M. Gelbart. 2007. A modified universal fast walking method for single-tube transposon mapping. Nat. Protocols 2:1556-1563.
Nakajima, N., H. Mori, K. Yamazaki, and H. Imaseki. 1990. Molecular cloning and sequence of a complementary DNA encoding 1-aminocyclopropane-1-carboxylate synthase induced by tissue wounding. Plant Cell Physiol. 31: 1021-1029.
Newell, C. A. 2000. Plant transformation technology. Developments and applications. Mol. Biotechnol. 16:53-65.
Nielsen, C. R., Berdal K. G., and Holst-Jensen A. 2008. Anchored PCR for possible detection and characterization of foreign integrated DNA at near single molecule level. Eur. Food Res. Technol. 226:949–956.
Novak, F. J. 1992. Biotechnology of perennial fruit crops. 449-488.
O’Donnell, P. J., C. Calvert, R Atzorn, C. Wasternack, H. M. O. Leyser, and D. J. Bowles. 1996. Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917.
Pall, G. S., Codony-Servat C., Byrne J., Ritchie L., Hamilton A. 2007. Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucl. Acids Res. 35:e60.
Pech, J. C., M. Bouzayen, and A. Latche. 2008. Climacteric fruit ripening: Ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci. 175: 114–120.
Pe´rez-Herna´ndez, J. B., , R. Swennen, and L. Sági. 2006. Number and accuracy of T-DNA insertions in transgenic banana (Musa spp.) plants characterized by an improved anchored PCR technique. Transgenic Res. 15:139-150.
Picton, S., S. L. Barton, M. Bouzayen, A. J. Hamilton, and D. Grierson. 1993. Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Plant J. 3:469–481.
Rodolfo, L. G., M. D. Francisco, A. O. Mendoza., and A. G.M. M. Lim. 2004. Identification of a Genomic Clone to ACC Oxidase from Papaya (Carica papaya L.) and Expression Studies. J. Agri. Food Chem. 52:794-800.
Riva, G. A., J. González-Cabrera, R. Vázquez-Padrón, C. Ayra-Pardo. 1998. Agrobacterium tumefaciens: a natural tool for plant transformation. Electron J Biotechnol. 1:113-118.
Rogers, S. G., K. O''Connell, R. B. Horsch, R. T. Fraley. 1985. Investigations of factors involved in foreign protein expression in transformed plants. In: Zaitlin M, Day P, Hollaender A (eds) Biotechnology in Plant Science. p. 219-226.
Rojo, E., R. Solano, and J. J. Sanchez-Serrano. 2003. Interactions between signaling compounds involved in plant defense. J. Plant. Growth Regul. 22:82–98.
Sallaud, C., D. Meynard, J. Van-Boxtel, C. Gay, M. Be`s, J. P. Brizard, P. Larmande, D. Ortega, M. Raynal, M. Portefaix, P. B. F. Ouwerkerk, S. Rueb, M. Delseny and E. Guiderdoni. 2003. Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet. 106:1396–1408.
Shirsat, A.H., N. Wilford, and R. R. D. Croy. 1989. Gene copy number and levels of expression in transgenic plants of a seed specific gene. Plant Sci 61:75-80.
Sha, Y., S. Li, Z. Pei, L. Luo, Y. Tian, and C. He. 2004. Generation and flanking sequence analysis of a rice T-DNA tagged population. Theor. Appl. Genet. 108:306–314.
Slater, A., M. J. Theologis, K. Edwards, W. Schuch, and D. Grierson. 1985. Isolation and characterization of cDNA clones for tomato polygalacturonase and other ripening- related proteins. Plant Mol. Biol. 5: 137-147.
Smith, E. F., and C. O. Towsend. 1907. A plant tumor of bacterial origin. Science 25:671-673.
Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98: 503-517.
Spanu, P., D. Reinhardt, and T. Boller. 1991. Analysis and cloning of the ethylene-forming enzyme from tomato by functional expression of its messenger-RNA in Xenopus laevis oocytes. EMBO J. 10: 2007-2013.
Spielmann, A. and R. B. Simpson. 1986. T-DNA structure in transgenic tobacco plants with multiple independent integration sites. Mol Gen Genet. 205:34–41.
Tan, G., Y. Gao, M. Shi, X. Zhang, S. He, Z. Chen and C. An. 2005.SiteFinding-PCR: a simple and efficient PCR method for chromosome. Nucleic Acids Res. 33:122-129.
Thomma, B.P., I.A. Penninckx, W.F. Broekaert, and B.P. Cammue. 2001. The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13: 63–68.
Topping, J. F., W. Wei, M. C. Clarke, P. Muskett, and K. Lindsey. 1995. Agrobacterium- mediated transformation of Arabidopsis thaliana. Application in T-DNA tagging. Methods Mol. 49:63-76.
Triglia, T., M. G. Peterson, and D.J. Kemp. 1988. A procedure for in vitro amplification of DNA segments that lie outside the bound¬aries of known sequences. Nucleic Acids Res. 16:8186.
Ulker, B., Y. Li, M. G. R., E Logemann1, I. E Somssich, and B. Weisshaar. 2008. T-DNA–mediated transfer of Agrobacterium tumefaciens chromosomal DNA into plants. Nat Biotechnol. 26:1015-1017.
Van der Straeten, D., L. Van Wiemeersch, H. M. Goodman, and M. Van Montagu. 1990. Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane- 1-carboxylate synthase in tomato. Proc. Natl. Acad. Sci. USA 87: 4859-4863.
Vance, V., and H. Vaucheret. 2001. RNA silencing in plants-defense and counter defense. Science 292:2277-2280.
Ververidis, P. and P. John. 1991. Complete recovery in vitro of ethylene-forming enzyme activity. Phytochem. 30: 725-727.
Waterhouse P. M., M. B. Wang, E. J. Finnegan. 2001. Role of short RNAs in gene silencing. Trends. Plant Sci. 6:297-301.
Yan, Y., C. An, L. Li, J. Gu, G. Tan and Z. Chen. 2003. T-linker-specific ligation PCR (T-linker PCR): an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends. Nucleic Acids Res. 31:68-75.
Yang, S.F., and N.E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol. 35:155–189.
Yin, B., and D. Largaespada. 2007. PCR-based procedures to isolate insertion sites of DNA elements. BioTechniques 43:79-84.
Yin, Z. and G. L. Wang. 2000. Evidence of multiple complex patterns of T-DNA integration into the rice genome. Theor Appl Genet. 100:461–470.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔