(54.236.62.49) 您好!臺灣時間:2021/03/06 09:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:余軍洪
研究生(外文):Kuan-Hong U
論文名稱:常見室內植物移除甲醛能力之研究
論文名稱(外文):Studies on Removal of Formaldehyde by Indoor Plants
指導教授:葉德銘葉德銘引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:90
中文關鍵詞:室內空氣品質生物降解系統病態建築症候群揮發性有機物質
外文關鍵詞:Indoor air qualityphytoremediation systemsick building syndromevolatile organic compounds
相關次數:
  • 被引用被引用:10
  • 點閱點閱:857
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
甲醛為室內常見之揮發性有機物質(Volatile organic compounds, VOCs),且為人類致癌物。前人研究指出應用植物可減少室內甲醛,本研究將植物置於甲醛濃度為1 ± 0.01 μL•L-1之密閉熏氣箱(0.128 m3)內測試常見二十種室內植物、四種切花與五種切葉甲醛移除能力,並探討植物於不同光強度、CO2濃度及不同植株部位長時間置於甲醛環境下,對植物甲醛吸收能力之影響。

參試之二十種室內植物皆可吸收甲醛,將植物置於熏氣箱後,箱內之甲醛濃度逐漸減少,以盆徑15-cm的盆菊‘金山’、盆徑9-cm的波士頓腎蕨‘Bostoniensis’與白鶴芋‘帕拉斯’單盆移除能力最好,分別於試驗第一小時可移除熏氣箱內0.78 μL•L-1、0.64 μL•L-1與0.56 μL•L-1之甲醛。而仙客來‘Bright Red Compact’、盆菊‘金山’及中斑香龍血樹的單位葉面積甲醛移除效率最高,換算移除熏氣箱中一半甲醛濃度之時間(T50%),T50% 分別為21 ± 2 min,22 ± 3 min與27 ± 8 min。

參試四種切花與五種切葉皆可移除甲醛。菊花‘林克小白’甲醛移除能力為參試切花中最高,於試驗8小時內可移除熏氣箱內0.60 μL•L-1之甲醛。去除葉片的切花其甲醛移除能力明顯較有葉片之切花低。各切花移除甲醛能力與熏氣箱內相對濕度變化趨勢類似,顯示甲醛移除能力與蒸散作用有關。五種切葉中以葉面積最多之斑葉蜘蛛抱蛋和八角金盤的單位葉面積甲醛移除能力最好,分別於試驗4小時內每cm2葉面積可移除0.22 μg和0.23 μg 之甲醛。五種切葉單位葉面積甲醛移除能力與淨光合作用速率和氣孔導度呈顯著正相關。

七種天南星科植物於黑暗下仍可移除少量甲醛。白鶴芋‘帕拉斯’移除甲醛能力隨淨光合作用速率與氣孔導度上升而增加,其他六種天南星科植物於光強度80 μmol•m-2•s-1至120 μmol•m-2•s-1時單位葉面積移除能力達飽和;於0 μmol•m-2•s-1至160 μmol•m-2•s-1之光強度下氣孔導度變化趨勢與六種天南星科植物單位葉面積甲醛移除能力類似(R2 = 0.67),但淨光合作用速率則隨光強度上升而增加,尚未達飽和。

置放白鶴芋‘帕拉斯’之熏氣箱內CO2濃度於黑暗環境下隨甲醛處理時間增加而上升,但於光環境下則下降。高CO2濃度(1134.8 μL•L-1)使白鶴芋‘帕拉斯’甲醛移除能力下降,光強度由80 μmol•m-2•s-1增至160 μmol•m-2•s-1可提升白鶴芋‘帕拉斯’對甲醛吸收能力。

測試黛粉葉‘白玉’地上部、整株、地下部及高溫殺菌後地下部四個部位連續7天甲醛移除能力。黛粉葉‘白玉’地上部和整株處理於連續7天甲醛處理中,每天皆可持續移除熏氣箱中甲醛,又以整株處理移除能力最好。黛粉葉‘白玉’地上部及整株兩處理之淨光合作用速率、葉綠素計讀值與葉綠素螢光值於試驗期間皆沒有下降。黛粉葉‘白玉’地下部處理者,於連續7天甲醛處理中,每天皆可持續移除熏氣箱內約60%之甲醛。高溫殺菌後地下部其移除能力隨試驗天數增加而上升,於試驗第7天甲醛移除能力與未經高溫殺菌地下部沒有明顯差異。


Formaldehyde is one of the common indoor volatile organic compounds and has been classified as a human carcinogen. Plants can reduce formaldehyde concentration as shown in previous reports. In this study, we determined removal capacity of formaldehyde by twenty species/cultivars of indoor plants, four species of cut flowers, and five species of cut leaves. Plant materials were exposed to formaldehyde (1 ± 0.01 μL•L-1) in airtight chambers (0.128 m3) and the amount of formaldehyde removal was assessed under various light intensities, CO2 concentrations, and long term formaldehyde exposure conditions.

Twenty indoor plant species/cultivars were found to be effective in reducing formaldehyde concentration, which decreased with time. Potted plants of Dendranthema ×grandiflorum (Ramat.) Kitam. ‘Jin-Shan’ , Nephrolepis exaltata (L.) Schott ‘Bostoniensis’ and Spathiphyllum floribundum (Linden & André) N. E. Br. ‘Palas’ had the highest formaldehyde absorption rates of 0.78 μL•L-1, 0.64 μL•L-1 and 0.56 μL•L-1 per pot, respectively, during the first one hour exposure. Cyclamen persicum Mill. ‘Bright Red Compact’, D. ×grandiflorum (Ramat.) Kitam. ‘Jin-Shan’, and Dracaena fragrans (L.) Ker Gawl. ‘Massangeana’ had highest removal efficiencies, as calculated on a leaf area basis, with the shortest time to reduce 50% of the initial concentration (T50%) at 21 ± 2, 22 ± 3, and 27 ± 8 min, respectively.

The cut flowers and cut leaves could remove formaldehyde. Among the cut flowers tested, chrysanthemum had the highest formaldehyde absorption, and could remove 0.60 μL•L-1 formaldehyde concentration in the chambers during the 8 h experiment. Formaldehyde removal rate decreased when leaves were detached. Formaldehyde absorption by cut flowers increased with increasing relative humidity in the chamber. Among the cut leaves tested, Aspidistra elatior Blume ‘Variegata’ and Fatsia japonica (Thunb.) Decne. & Planch. had the highest removal efficiencies of 0.22 μg and 0.23 μg per cm2 leaf area during the 4 h exposure. Linear relationships existed between formaldehyde removal and net photosynthesis rate (r = 0.72***) or stomatal conductance (r = 0.72***), respectively, for five species of cut leaves.
Seven Araceae plants could reduce small amounts of formaldehyde in dark conditions. Formaldehyde absorption, net photosynthetic rate, and stomatal conductance increased in S. floribundum (Linden & André) N. E. Br. ‘Palas’ as light intensity increased from 0 μmol•m-2•s-1 to 120 μmol•m-2•s-1 PPF. The net photosynthetic rate of other six Araceae plants increased linearly with increasing light intensity, while saturated formaldehyde absorption occurred at 80 μmol•m-2•s-1 to 120 μmol•m-2•s-1 PPF.

When plants of S. floribundum (Linden & André) N. E. Br. ‘Palas’ were placed in the chambers, carbon dioxide concentration in the chambers increased in the dark and decreased in the light conditions. High CO2 concentration at 1134.8 μL•L-1 reduced formaldehyde absorption of plants, while more formaldehyde was reduced by plants with increasing light intensity from 80 μmol•m-2•s-1 to 160 μmol•m-2•s-1 PPF.

Formaldehyde removal efficiency of Dieffenbachia maculata (Lodd. et al.) G. Don ‘Camilla’ was assessed by shoot, whole plant, root zone, and root zone with sterilization. The formaldehyde removal by shoot was lower than by whole plant. Exposure to formaldehyde did not alter net photosynthetic rate, SPAD-502 value and Fv/Fm in the recently fully developed leaves in shoot or whole plant during the seven successive days. Root zone could remove 60% initial formaldehyde concentration in the chambers each day for successive seven days. Formaldehyde absorption of root zone after sterilization increased with time. Regardless of root zone sterilization or not, no significant difference was observed in formaldehyde absorption on day 7.


目錄
誌謝 I
目錄 I
表目錄 III
圖目錄 IV
中文摘要 VI
Abstract VIII
前言 (Introduction) 1
前人研究(Literature Review) 3
一、空內空氣品質(Indoor air quality, IAQ) 3
(一) 揮發性有機物(Volatile organic compounds, VOCs) 3
(二) 病態建築症候群(Sick building syndrome, SBS) 4
二、甲醛對人體之影響 6
三、室內空氣品質對經濟之影響 7
四、於環境中擺放植物淨化室內空氣污染與SBS 8
(一) 應用植物移除環境中空氣污染物和甲醛 8
(二) 利用植物改善SBS 10
五、植物移除甲醛機制 11
六、影響植物吸收甲醛及其他VOCs之因子 13
(一) 植物種類 13
(二) 光強度 14
(三) 甲醛濃度 15
(四) CO2濃度 16
(五) 植物長時間移除甲醛 17
(六) 介質與微生物 17
材料與方法(Materials and Methods) 19
試驗一、常見二十種盆花與觀葉植物甲醛移除能力 19
試驗二、常見切花與切葉甲醛移除能力 21
試驗三、光強度對七種天南星科植物甲醛移除能力之影響 22
試驗四、二氧化碳濃度與光強度對白鶴芋‘帕拉斯’甲醛移除能力之影響 24
試驗五、甲醛連續處理七天對黛粉葉‘白玉’地上部、整株、地下部和高溫殺菌後地下部甲醛移除能力及光合作用之影響 25
統計分析 26
結果(Results) 28
試驗一、常見二十種盆花與觀葉植物甲醛移除能力 28
試驗二、常見切花與切葉甲醛移除能力 32
試驗三、光強度對七種天南星科植物甲醛移除能力之影響 33
試驗四、二氧化碳濃度與光強度對白鶴芋‘帕拉斯’甲醛移除能力之影響 37
試驗五、連續甲醛處理七天對黛粉葉‘白玉’地上部、整株、地下部和高溫殺菌後地下部甲醛移除能力及光合作用系統之影響 39
討論(Discussion) 69
結論(Conclusion) 78
參考文獻(References) 80
附錄(Appendix) 89




行政院環境保護署. 2005.揮發性有機物空氣污染管制及排放標準. <http://ivy5.epa.gov.tw/epalaw/docfile/040162.pdf>
孫岩章. 1993. 綠色植物淨化空氣的機能. 科學農業. 41:163-176.
孫岩章. 1999. 利用空氣清淨生態系統裝置改善室內空氣品質之一種設計. 中華民國環境保護學會會誌. 22:131-141.
曹慧嫺. 2001. 常見室內植物對甲醛之吸收及其反應. 國立臺灣大學植物病理與微生物學硏究所碩士論文.
陳彥宇. 2007. 常見室內植物對甲醛及二氧化碳之吸收及反應. 國立臺灣大學植物病理與微生物學硏究所碩士論文.
游玫琦譯. 1997. 如何預防居家健康殺手. 旺文社, 台北.
黃玉立. 2006. 高污染空品區有害空氣污染物本土暴露特性分析與資料庫建置. 子計畫一:本土化生活型態及呼吸暴露係數之建置與評估. 國立高雄第一科技大學環境與安全衛生工程系. NSC 94-EPA-Z-327-002
蘇慧貞. 2005. 室內空氣污染物健康風險評估與管制成本效益分析. 國立成功大學環境醫學研究所. EPA-93-FA11-03-A118
Achkor, H., M. Díaz, M.R. Fernández, J.A. Biosca, X. Parés, and M.C. Martínex. 2003. Enhance formaldehyde detoxification by overexpression of glutathione - dependent formaldehyde dehydrogenase from Arabidopsis. Plant Physiol. 132:2248-2252.
BCC Research. 2009. Environment, Report Code: ENV003C. U.S. Indoor Air Quality Market. Wellesley, MA. 25 April 2010. http://www.bccresearch.com/report /ENV003C.html
Bholah, R. I. Fagoonee, and A.H. Subratty. 2000. Sick building syndrome in Mauritius: are symptoms associated with the office environment? Indoor Build Environ. 9:44-51.
Bruno. P., M. Caselli, G. deGennaro, S. Lacobellis, and M. Tutino. 2008. Monitoring of volatile organic compounds in non-residential indoor environments. Indoor Air 18:250-256.
Burge, P.S. 2004. Sick building syndrome. Occup. Environ. Med. 61:185-190.
Cape, J.N. 2003. Effects of airborne volatile organic compounds on plants. Environ. Pollut. 122:145-157.
Chang, C.Y. and P.K. Chen. 2005. Human response to window views and indoor plants in the workplace. HortScience 40:1354-1359.
Chao, N.T., W.A. Wang, and C.M. Chuang. 1998. A study of a control strategy utilizing outdoor air to reduce the wintertime carbon dioxide levels in a typical Taiwanese bedroom. Energy Build. 29:93-105.
Chen, W., J.S. Zhang, and Z. Zhang. Performance of air cleaners for removing multiple volatile organic compounds in indoor air. ASHRAE Trans. 111:1101-1114.
Cheong, K.W. and K.Y. Chong. 2001. Development and application of an indoor air quality audit to an air-conditioned building in Singapore. Building Environ. 36:181-188.
Chuah, Y.K., Y.M. Fu, C.C. Hung, and P.C. Tseng. 1997. Concentration variation of pollutants in a work week period of an office. Building Environ. 32:535-540.
Cornejo, J.J., F.G. Mu, C.Y. Ma, and A.J. Stewart. 1999. Studies on the decontamination of air by plants. Ecotoxicol. 8:311-320.
Destaillats, H., R.L. Maddalena, B.C. Singer, A.T. Hodgson, and T.E. McKone. 2008. Indoor pollutants emitted by office equipment: A review of reported data and information needs. Atmos. Environ. 42:1371-1388.
Dingle, P., P. Tapsell, and S. Hu. 2000. Reducing formaldehyde exposure in office environments using plants. Bull. Environ. Contam. Toxicol. 64:302-308.
Dravigne, A., T.M. Waliczek, R.D. Lineberger, and J.M. Zajicek. 2008. The effect of live plants and window of green spaces on employee perceptions of job satisfaction. HortScience 43:183-187.
Fanger, P.O. 2006. What is IAQ? Indoor Air 16:328-334.
Fanger, P.O. 2000. Indoor air quality in the 21st century: search for excellence. Indoor Air 10:68-73.
Fisk, W.J. 2002. How IEQ affects health, productivity. ASHRAE J. 44:56-60.
Fisk, W.J. and A.H. Rosenfeld. 1997. Estimates of improved productivity and health from better indoor environments. Indoor Air 7:158-172.
Fjeld, T. 2000. The effect of interior planting on health and discomfort among workers and school children. HortTechnology 10:46-52.
Gilbert, N.L., M. Guay, D. Gauvin, R.N. Dietz, C.C. Chan, and B. Lévesque. 2008. Air change rate and concentration of formaldehyde in residential indoor air. Atmos. Environ. 42:2424-2428.
Gises, M., U. Bauer-Doranth, C. Langebartels, and H. Sandermann. 1994. Detoxification of formaldehyde by the spider plant (Chlorophytum comosum L.) and by soybean (Glycine max L.) cell-suspension cultures. Plant Physiol. 104:1301-1309.
Godish, T. 1995. Sick buildings: Definition, diagnosis, and mitigation. Lewis Publishers, Boca Raton, FL.
Guieysse, B., C. Hort, V. Platel, R. Munoz, M. Ondarts, and S. Revah. 2008. Biological treatment of indoor air for VOC removal: potential and challenges. Biotechnol. Adv. 26:398-410.
Guo, H., N.H. Kwok, H.R. Cheng, S.C. Lee, W.T. Hung, and Y.S. Li. 2009. Formaldehyde and volatile organic compounds in Hong Kong homes: concentrations and impact factors. Indoor Air 19:206-217.
Herbarth, O. and S. Matysik. 2010. Decreasing concentrations of volatile organic compounds (VOC) emitted following home renovations. Indoor Air 20:141-146.
Hines, A.L., T.K. Ghosh, S.K. Loyalka, and R.C. Warder, Jr. 1993. Indoor air quality and control. Prentice Hall, Englewood Cliffs, N. J.
Hodgson, A.T., A.F. Rudd, D. Beal, and S. Chandra. 2000. Volatile organic compound concentration and emission rates in new manufactured and site-build houses. Indoor Air 10:178-192.
IARC. 2006. Formaldehyde, 2-butoxyethanol and 1-tert-butoxypropan-2-ol. Morographs on the evalution of carcinogenic risks to humans. Vol. 88.
Jones, A.P. 1999. Indoor air quality and health. Atmos. Environ. 33:4535-4564.
Kelly, T.J., D.L. Smith, and J. Satola. 1999. Emission rates of formaldehyde from materials and consumer products forum in California home. Environ. Sci. Technol. 33:81-88.
Kil, J.K., K.J. Kim, C.H. Pak, H.H. Kim, and Y.W. Lim. 2008. Effects of growing media and exposure frequency on the volatile formaldehyde removal in potted Epipremnum aureum. Kor J. Hort. Sci. Technol. 26(3)325.(abstr.)
Kil, M.J., K.J. Kim, J.K. Cho, and C.H. Park. 2008. Formaldehyde gas removal effects and physiological responses of Fatsia japonica and Epipremnum aureum according to various light intensity. Kor. J. Hort. Sci. Technol. 26(2):189.(abstr.)
Kilburn, K. H. 1994. Neurobehavioral impairment and seizures from formaldehyde. Arch. Environ. Health. 49(1):37 (abstr.).
Kim, K.J. and D.W. Lee. 2008. Efficiency of volatile formaldehyde removal of orchids as affected by species and crassulacean acid metabolism (CAM) nature. Hort. Environ. Biotechnol. 49:132-137.
Kim, K.J., M.J. Kil, J.S. Song, E.H. Yoo, K.C. Son, and S.J. Kays. 2008. Efficiency of volatile formaldehyde removal by indoor plants: Contribution of aerial plant parts versus the root zone. J. Amer. Soc. Hort. Sci. 133:521-526.
Klepeis, N.E., W.C. Nelson, W.R. Ott, J.P. Robinson, A.M. Tsang, P. Switzer, J.V. Behar, S.C. Hern, and W.H. Engelmann. 2001. The national humam activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants. J. Exposure Anal. Environ. Epidem. 11:231-252.
Kondo, T., K. Hasegawa, R. Uchida, and M. Onishi. 1998. Absorption of atmospheric C2-C5 aldehydes by various tree species and their tolerance to C2-C5 aldehyde. Sci. Total Environ. 224:121-132.
Kondo, T., K. Hasegawa, R. Uchida, M. Onishi, A. Mizukami, and K. Omasa. 1995. Absorption of Formaldehyde by Oleander (Nerium indicum). Environ. Sci. Technol. 29:2901–2903.
Kondo, T., K. Hasegawa. R. Uchida. M. Onishi. A. Mizukami. and K. Omasa. 1996. Absorption of atmospheric formaldehyde by deciduous broad-leaved, evergreen broad-leaved, and coniferous tree species. Bull. Chem. Soc. Jpn. 69:3673–3679.
Kreuzwiesere, J., H. Rennengerg, and R. Steinbrecher. 2006. Impact of short-term and long-term elevated CO2 on emission of carbonyls from adult Quercus petraea and Carpinus betulus trees. Environ. Pollut. 142:246-253.
Lee, S.C., W.M. Li, and C.H. AO. 2002. Investigation of indoor air quality at residential homes in Hong Kong – case study. Atmos. Environ. 36:225-237.
Lim, Y.W., H.H. Kim, J.Y. Yang, K.J. Kim, J.Y. Lee, and D.C. Shin. 2009. Improvement of indoor air quality by houseplant in new-build apartment buildings. J. Jpn. Soc. Hort. Sci. 78:456-462.
Liu, Y.J., Y.J. Mu, Y.G. Zhu, H. Ding, and N.C. Arens. 2007. Which ornamental plant species effectively remove benzene from indoor air? Atmos. Environ. 41:650-654.
Lohr, V.I. and C.H. Pearson-Mims. 1996. Particulate matter accumulation on horizontal surfaces in interiors: Influence of foliage plants. Atoms. Environ. 30:2565-2568.
Lohr, V.I. and C.H. Pearson-Mims. 2000. Physical discomfort may be reduced in the presence of interior plants. HortTechnology 10:53-58.
Lohr, V.I., C.H. Pearson-Mims, and G.K. Goodwin. 1996. Interior plants may improve worker productivity and reduce stress in a windowless environment. J. Environ. Hort. 14:97-100.
Marsh, G. M., R. A. Stone and V. L. Henderson. 1992. Lung cancer mortality among industrial workers exposed to formaldehyde: a poisson regression analysis of the national cancer institute study. 53(11):681 (abstr.).
Mølhave, L., B. Bach., and O.F. Pedersen. 1986. Human reactions to low concentrations of volatile organic compounds. Environ. Inter. 12:167-175.
Mui, K.W., L.T. Wong, P.S. Hui, W.Y. Chan. 2009. Formaldehyde exposure risk in air-conditioned office of Hong Kong. Build. Serv. Eng. Res. Technol. 30:279-286.
Niinemets, Ü. and M. Reichstein. 2003a. Controls on the emission of plant volatiles through stomata: a sensitivity analysis. J. Geophys. Res. 108:4211.
Niinemets, Ü. and M. Reichstein. 2003b. Controls on the emission of plant volatiles through stomata: differential sensitivity of emission rates to stomatal closure explained. J. Geophys. Res. 108:4208.
Niinemets, Ü., F. Loreto, and M. Reichstein. 2004. Physiological and physicochemical controls on foliar volatile organic compound emissions. TRENDS Plant Sci. 9:1380-1386
Norbäck, D. 2009. An update on sick building syndrome. Current Opinion Allergy Clin. Immunol. 9:55-59.
Norbäck, D., and K. Nordström. 2008. Sick building syndrome in relation to air exchange rate, CO2, room temperature and relative air humidity in university computer classrooms: an experimental study. Intl. Arch. Occup. Environ. Health 82:21-30.
Osawa, H. and M. Hayashi. 2009. Status of the indoor air chemical pollution in japanesse houses based on the nationwide field survey from 2000 to 2005. Build. Environ. 44:1330-1336.
Orwell, R.L., R.A. Wood, M.D. Burchett, J. Tarran, and F. Torpy. 2006. The potted-plant microcosm substantially reduces indoor air voc pollution: II. Laboratory study. Water Air Soil Pollut. 177:59-80.
Orwell, R.L., R.L. Wood, J. Tarran, F. Torpy, and M.D. Burchett. 2004. Removal of benzene by the indoor plant/substrate microcosm and implications for air quality. Water Air Soil Pollut. 157:193-207.
Park, S.H. and R.H. Mattson. 2009. Therapeutic influences of plants in hospital room on surgical recovery. HortScience 44:102-105.
Redlich, C.A., J. Sparer, and M.R. Cullen. 1997. Sick-building syndrome. Lancet 349:1013-1016.
Ritchie, I.M. and R.G. Lehnen. 1987. Formaldehyde-related health complaints of residents living in mobile and conventional homes. Amer. J. Public Health 77:323-328.
Rottenberger, S., U. Kuhn, A. Wolf, G. Schebeske, S.T. Oliva, T.M. Tavares, and J. Kesselmeier. 2005. Formaldehyde and acetaldehyde exchange during leaf development of the Amazonian deciduous tree species Hymenaea courbaril. Atmos. Environ. 39:2275-2279.
Rottenberger, S., U. Kuhn, A. Wolf, G. Schebeske, S.T. Oliva, T.M. Tavares, and J. Kesselmeier. 2004. Exchange of short-chain aldehydes between Amazonian vegetation and the atmosphere. Ecol. Appl. 14:S247-S262.
Salthammer, T. 1997. Emission of volatile organic compounds from furniture coatings. Indoor Air 7:189-197.
Sawada, A. and T. Oyabu. 2008. Purification characteristics of pothos for airborne chemicals in growing conditions and its evaluation. Atmos. Environ. 42:594-602.
Schmitz, H., U. Hilgers, and M. Weidner. 2000. Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification. New Phytol. 147:307-315.
Seco, R., J. Peñuelas, and I. Filella. 2007. Short-chain oxygenated VOCs: Emission and uptake by plants and atmospheric sources, sink, and concentrations. Atmos. Environ. 41:2477-2499.
Seco, R., J. Peñuelas, and I. Filella. 2008. Formaldehyde emission and uptake by Mediterranean trees Quercus ilex and Pinus halepensis. Atmos. Environ. 42:7907-7914.
Seppänen, O., W. Fisk, and M. Mendell. 1999. Association of ventilation rates and CO2 concentrations with health and other human responses in commercial an institutional buildings. Intl. J. Indoor Air Quality Climate. 9:226-252.
Song, J.E., Y.S. Kim, and J.Y. Sohn. 2007. The impact of plants on the reduction of volatile organic compounds in a small space. J. Physiol. Anthropol. 26:599-603.
Stenberg, B. and S. Walls. 1995. Why do women report‘sick building symptoms’more often than men? Soc. Sci. Med. 40:491-502.
Sundell, J. 2004. On the history of indoor air quality and health. Indoor Air 14:51-58.
Takigawa, T., B.L. Wang, Y. Saijo, K. Morimoto, K, Nakayama, M. Tanaka, E. Shibata, T. Yoshimura, H. Chikara, K. Ogino, and Reiko, Kishi. 2010. Relationship between indoor chemical concentrations and subjective symptoms associated with sick building syndrome in newly built houses in Japan. Intl. Arch. Occup. Environ. Health. 83:225-235.
Tang, X.J., Y. Bai, A. Duong, M.T. Smith, L.Y. Li, and L.P. Zhang. 2009. Formaldehyde in China: production, consumption, exposure levels, and health Effects. Environ. Intl. 35:1210-1224.
Torre, S., T. Fjeld, H.R. GislerØd, and R. Moe. 2003. Leaf anatomy and stomaal morphology of greenhouse roses grown at moderate or high air humidity. J. Amer. Soc. Hort. Sci. 128:598-602.
U.S. Environmental Protection Agency. 2008. Indoor Air Quality, Indoor Air Facts, NO.4. Sick Building Syndrome. Indoor Air Home, Washington, D.C. 6 April 2010. < http://www.epa.gov/iaq/pubs/sbs.html>
U.S. Environmental Protection Agency. 2009. Indoor Air Quality, An Introduction to Indoor Air Quality. Formaldehyde. Indoor Air Quality Home, Washington, D.C. 6 April 2010. <http://www.epa.gov/iaq/formalde.html>
U.S. Environmental Protection Agency. 2009. Indoor Air Quality, An Introduction to Indoor Air Quality. Volatile Organic Compounds (VOCs). Indoor Air Quality Home, Washington, D.C. 6 April 2010. <http://www.epa.gov/iaq/formalde.html>
Wallace, L.A. 2001. Human exposure to volatile organic pollutants: implications for indoor air studies. Annu. Rev. Energy Environ. 26:269-301.
Wan, J.J. and J.Y. Sohn. 2009. The effect of environmental and structural factors on indoor air quality of apartments in Korea. Build. Environ. 44:1794-1802.
Wang, B.L., T. Takigawa, Y. Yamasaki, N. Sakano, D.H. Wang, and K. Ogino. 2008. Symptom definitions for SBS (sick building syndrome) in residential dwellings. Int. J. Hyg. Environ. Health 211:114-120.
Wargocki, P., D.P. Wyon, Y.K. Baik, G. Clausen, and P.O. Fanger. 1999. Perceived air quality, sick building syndrome (SBS) symptoms and productivity in an office with two different pollution loads. Indoor Air 9:165-179.
Wargocki, P., J. Sundell, W. Bischof, G. Brundrett, P.O. Fanger, F. Gyntelberg, S.O. Hanssen, P. Harrison, A. Pickering, O. Seppänen, and P. Wouters. 2002. Ventilation and health in non-industrial indoor environments: report from a European Multidisciplinary Scientific Consensus Meeting (EUROVEN). Indoor Air 12:113-128.
Weschler, C.J. 2009. Changes in indoor pollutants since the 1950s. Atmos. Environ. 42:153-169.
Willmer, C. and Fricker, M. 1996. Stomata. 2th ed. Chapman & Hall, London, U.K.
Wolkoff, P. 1998. Impact of air velocity, temperature, humidity, and air on long-term VOC emissions from building products. Atmos. Environ. 32:2659-2668.
Wolkoff, P. 2008.‘Healthy eye’in office like environments. Environ. Int. 34:1204-1214.
Wolverton, B.C. 1988. Foliage plants for improving indoor air quality. Report. National Aeronautics and Space Administration, Stennis Space Center, Mississippi.
Wolverton, B.C. and J.D. Wolverton. 1993. Plants and soil microorganisms: removal of formaldehyde, xylene, and ammonia from the indoor environment. J. MS. Acad. Sci. 38:11-15.
Wolverton, B.C., A. Johnson, and K. Bounds. 1989. Interior landscape plants for indoor air pollution abatement. Report. National Aeronautics and Space Administration, Stennis Space Center, Mississippi.
Wood, R.A., M.D. Burchett, R. Alquezar, R.L. Orwell, J. Tarran, and F. Torpy. 2006. The potted-plant microcosm substantially reduces indoor air VOC pollution: I. Office field-study. Water Air Soil Pollut. 175:163-180.
Wood, R.A., R.L. Orwall, J. Tarran, F. Torpy, and M.D. Burchett. 2002. Potted plant growth media: interaction and capacities in removal of volatiles from indoor air. J. Hort. Sci. Biotechnol. 77:120-129.
World Health Organization. 1989. Indoor air quality: organic pollutants. EURP reports and studies. NO. 11. WHO Regional Office for Europe. Copenhagen, Denmark.
Wu, P.C., Y.Y. Li, C.C. Lee, C.M. Chiang, and H.J.J. Su. 2003. Risk assessment of formaldehyde in typical office buildings in Taiwan. Indoor Air 13:359-363.
Wyon, D.P. The effects of indoor air quality on performance and productivity. Indoor Air 14:92-101.
Yang, D.S., S.V. Pennisi, K.C. Son, and S.J. Kay. 2009. Screening indoor plants for volatile organic pollutant removal efficiency. HortScience 44:1377-1381.
Yoo, M.H., Y.J. Kwon, and K.C. Son. 2006. Efficacy of indoor plants for the removal of single and mixed volatile organic pollutants and physiological effects of the volatiles on the plants. J. Amer. Soc. Hort. Sci. 131:452-458.
Zabiegala, B. 2006. Organic compounds in indoor environments. Polish. J. Environ. Stud. 15:383-393.
Zhang, J.F. and K.R. Smith. 2003. Indoor air pollution: a global health concern. British Medical Bulletin 68:209-225.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔