(3.239.192.241) 您好!臺灣時間:2021/03/02 19:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張育菁
研究生(外文):Yu-Ching Chang
論文名稱:EB病毒單股DNA結合蛋白質BALF2的生物功能研究
論文名稱(外文):Characterization of the biological function of Epstein-Barr virus ssDNA-binding protein BALF2
指導教授:陳美如陳美如引用關係
指導教授(外文):Mei-Ru Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:52
中文關鍵詞:EB病毒BALF2單股DNA結合蛋白質
外文關鍵詞:EBVBALF2ssDNA-binding protein
相關次數:
  • 被引用被引用:1
  • 點閱點閱:205
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
EB病毒和一些人類的惡性疾病具有高度相關性,它感染宿主後會進入潛伏期,也能經由刺激再度活化而進入溶裂期。EB病毒於溶裂期時會利用自己所製造的複製相關蛋白質有效率地複製病毒的DNA。病毒所製造的單股DNA結合蛋白質(ssDNA-binding protein),BALF2,即為DNA複製所需的蛋白質之一。單股DNA結合蛋白質能夠經由結合單股DNA使其不被核酸酶所分解,並且防止其形成二級結構,同時也可能會透過與其他蛋白質形成一個複製複合體(replication complex)以輔助DNA進行複製。本研究的目的是分析BALF2的功能區域(functional domain),並且探討BALF2可能的生物功能。首先,為了定位BALF2的ssDNA-binding domain和nuclear localization signal (NLS),根據一些生物資訊以及和其他單股DNA結合蛋白質的氨基酸序列比對,建構表現不同片段BALF2的質體,並以ssDNA-cellulose層析法來測試利用試管內轉錄及轉譯系統所表現的不同片段BALF2與單股DNA的親和力。實驗結果確認利用氨基酸序列比對所發現的單股DNA結合蛋白質保守結構ssDNA-binding motif (BALF2 a.a. 741-785)的確對於BALF2結合單股DNA是重要的。其他的BALF2 deletion mutant與單股DNA之間的親和力也觀察到有下降的情形,推測可能是蛋白質結構的改變進而造成與單股DNA之間的親和力下降。此外,利用免疫螢光實驗發現缺少N端、C端或是保守結構ssDNA-binding motif的BALF2都會影響進核的比例。另外,為了確認能夠與BALF2有交互作用的病毒蛋白質,本研究以共免疫沉澱實驗進一步驗證BALF2與其他病毒蛋白質之間的交互作用,結果證實BALF2能夠和BGLF5 (核酸酶)以及BVRF1 (病毒外殼相關披膜蛋白質)產生交互作用。此外,為了探討BALF2在溶裂期DNA複製時的生物功能,透過PCR-targeting的方式,建構了一個將EB病毒B95-8 strain bacmid (p2089)的BALF2 ORF剔除的bacmid,簡稱為p2089ΔBALF2。目前已經利用PCR,BamHI切割及定序這三種方式確認p2089ΔBALF2的正確性。綜合實驗的觀察,對於BALF2的ssDNA-binding domain、進核機制以及BALF2和BGLF5 (核酸酶)及BVRF1 (病毒外殼相關披膜蛋白質)之間交互作用的生物意義仍然需要進一步的研究。

Epstein-Barr virus (EBV) is highly associated with several human malignancies. After infection, EBV can become latent and be reactivated into lytic replication. EBV is equipped with lytic viral proteins to efficiently replicate viral DNA. EBV-encoded ssDNA-binding protein, BALF2, is one of the essential viral replication proteins. The functions of ssDNA-binding proteins are to protect ssDNA from nucleases digestion and prevent ssDNA from forming secondary structure. It may also help DNA replication through forming a replication complex with other proteins. The specific aim of this study is to dissect the functional domain of BALF2, and to explore possible biological functions of BALF2. First, different deletion mutants were generated according to bioinformatics and sequence alignment with other ssDNA-binding proteins for mapping the ssDNA-binding domain and nuclear localization signal (NLS) of BALF2. The DNA binding affinities of different in vitro translated BALF2 deletion constructs were examined by ssDNA-cellulose chromatography. The result indicated that the conserved structure ssDNA-binding motif (BALF2 a.a. 741-785), identified by amino acid alignment, is important for BALF2 to bind ssDNA. Moreover, the decrease of ssDNA-affinity was also observed in other BALF2 deletion mutants, which may result from abnormal protein structure. In addition, the immunofluorescence assay revealed that the deletion of N-terminus or C-terminus or ssDNA-binding motif regions affected the nuclear targeting of BALF2. To search for BALF2 interacting viral protein, co-immunoprecipitation assay was used to confirm the interaction between BALF2 and other viral proteins, which showed that BALF2 interacts with BGLF5 (nuclease) and BVRF1 (capsid-associated tegument protein). To explore the biological function of BALF2 on EBV lytic replication, a BALF2 knock-out B95-8 bacmid (p2089ΔBALF2) was generated through PCR-targeting protocol, and its correctness was confirmed by PCR, BamHI-digestion, and sequencing. Overall, the ssDNA-binding domain of BALF2, the mechanism of BALF2 nuclear localization, and the biological significances of the interaction with BGLF5 (nuclease) and BVRF1 (capsid-associated tegument protein) all need to be further studied.

口試委員審定書
碩博士論文授權書
誌謝...............................................I
中文摘要..........................................II
英文摘要.........................................III
序論...............................................1
實驗材料與方法.....................................10
實驗結果...........................................21
討論...............................................25
圖表...............................................31
參考文獻...........................................46

Alberts, B. M. & Frey, L. (1970). T4 bacteriophage gene 32: a structural protein in the replication and recombination of DNA. Nature 227, 1313-1318.
Baer, R., Bankier, A. T., Biggin, M. D., Deininger, P. L., Farrell, P. J., Gibson, T. J., Hatfull, G., Hudson, G. S., Satchwell, S. C., Seguin, C. & et al. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-211.
Biggar, R. J., Henle, G., Bocker, J., Lennette, E. T., Fleisher, G. & Henle, W. (1978). Primary Epstein-Barr virus infections in African infants. II. Clinical and serological observations during seroconversion. Int J Cancer 22, 244-250.
Bochkareva, E., Korolev, S. & Bochkarev, A. (2000). The role for zinc in replication protein A. J Biol Chem 275, 27332-27338.
Burke, A. P., Yen, T. S., Shekitka, K. M. & Sobin, L. H. (1990). Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Mod Pathol 3, 377-380.
Burkitt, D. (1962). Determining the climatic limitations of a children''s cancer common in Africa. Br Med J 2, 1019-1023.
Calderwood, M. A., Venkatesan, K., Xing, L., Chase, M. R., Vazquez, A., Holthaus, A. M., Ewence, A. E., Li, N., Hirozane-Kishikawa, T., Hill, D. E., Vidal, M., Kieff, E. & Johannsen, E. (2007). Epstein-Barr virus and virus human protein interaction maps. Proc Natl Acad Sci U S A 104, 7606-7611.
Chen, C. & Okayama, H. (1987). High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7, 2745-2752.
Chevallier-Greco, A., Manet, E., Chavrier, P., Mosnier, C., Daillie, J. & Sergeant, A. (1986). Both Epstein-Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J 5, 3243-3249.
Cockrell, S. K., Sanchez, M. E., Erazo, A. & Homa, F. L. (2009). Role of the UL25 protein in herpes simplex virus DNA encapsidation. J Virol 83, 47-57.
Cohen, J. I., Krogmann, T., Pesnicak, L. & Ali, M. A. (2007). Absence or overexpression of the Varicella-Zoster Virus (VZV) ORF29 latency-associated protein impairs late gene expression and reduces VZV latency in a rodent model. J Virol 81, 1586-1591.
Daikoku, T., Kudoh, A., Fujita, M., Sugaya, Y., Isomura, H., Shirata, N. & Tsurumi, T. (2005). Architecture of replication compartments formed during Epstein-Barr virus lytic replication. J Virol 79, 3409-3418.
Daikoku, T., Kudoh, A., Sugaya, Y., Iwahori, S., Shirata, N., Isomura, H. & Tsurumi, T. (2006). Postreplicative mismatch repair factors are recruited to Epstein-Barr virus replication compartments. J Biol Chem 281, 11422-11430.
Damania, B. & Pipas, J. M. (2009). DNA tumor viruses. New York: Springer Science + Business Media.
Deng, X., Habel, J. E., Kabaleeswaran, V., Snell, E. H., Wold, M. S. & Borgstahl, G. E. (2007). Structure of the full-length human RPA14/32 complex gives insights into the mechanism of DNA binding and complex formation. J Mol Biol 374, 865-876.
Diehl, V., Hegge, K., Kalden, J., Desselberger, U. & Krull, P. (1976). [Immunologic status in Hodgkin patients: correlation with Epstein-Barr virus titers]. Blut 32, 279-284.
Dong, J., Park, J. S. & Lee, S. H. (1999). In vitro analysis of the zinc-finger motif in human replication protein A. Biochem J 337 ( Pt 2), 311-317.
Epstein, M. A., Achong, B. G. & Barr, Y. M. (1964). Virus Particles in Cultured Lymphoblasts from Burkitt''s Lymphoma. Lancet 1, 702-703.
Fingeroth, J. D., Weis, J. J., Tedder, T. F., Strominger, J. L., Biro, P. A. & Fearon, D. T. (1984). Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc Natl Acad Sci U S A 81, 4510-4514.
Fixman, E. D., Hayward, G. S. & Hayward, S. D. (1992). trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 66, 5030-5039.
Fixman, E. D., Hayward, G. S. & Hayward, S. D. (1995). Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J Virol 69, 2998-3006.
Fujii, K., Yokoyama, N., Kiyono, T., Kuzushima, K., Homma, M., Nishiyama, Y., Fujita, M. & Tsurumi, T. (2000). The Epstein-Barr virus pol catalytic subunit physically interacts with the BBLF4-BSLF1-BBLF2/3 complex. J Virol 74, 2550-2557.
Gao, M., Bouchey, J., Curtin, K. & Knipe, D. M. (1988). Genetic identification of a portion of the herpes simplex virus ICP8 protein required for DNA-binding. Virology 163, 319-329.
Gao, M. & Knipe, D. M. (1989). Genetic evidence for multiple nuclear functions of the herpes simplex virus ICP8 DNA-binding protein. J Virol 63, 5258-5267.
Gao, M. & Knipe, D. M. (1992). Distal protein sequences can affect the function of a nuclear localization signal. Mol Cell Biol 12, 1330-1339.
Gao, Z., Krithivas, A., Finan, J. E., Semmes, O. J., Zhou, S., Wang, Y. & Hayward, S. D. (1998). The Epstein-Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins. J Virol 72, 8559-8567.
Gorlich, D. & Kutay, U. (1999). Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15, 607-660.
Hardwick, J. M., Lieberman, P. M. & Hayward, S. D. (1988). A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J Virol 62, 2274-2284.
Henle, G. & Henle, W. (1966). Immunofluorescence in cells derived from Burkitt''s lymphoma. J Bacteriol 91, 1248-1256.
Henle, G., Henle, W. & Diehl, V. (1968). Relation of Burkitt''s tumor-associated herpes-ytpe virus to infectious mononucleosis. Proc Natl Acad Sci U S A 59, 94-101.
Hung, C. H. & Liu, S. T. (1999). Characterization of the Epstein-Barr virus BALF2 promoter. J Gen Virol 80 ( Pt 10), 2747-2750.
Johannsen, E., Luftig, M., Chase, M. R., Weicksel, S., Cahir-McFarland, E., Illanes, D., Sarracino, D. & Kieff, E. (2004). Proteins of purified Epstein-Barr virus. Proc Natl Acad Sci U S A 101, 16286-16291.
Jones, J. F., Shurin, S., Abramowsky, C., Tubbs, R. R., Sciotto, C. G., Wahl, R., Sands, J., Gottman, D., Katz, B. Z. & Sklar, J. (1988). T-cell lymphomas containing Epstein-Barr viral DNA in patients with chronic Epstein-Barr virus infections. N Engl J Med 318, 733-741.
Jullien, D., Gorlich, D., Laemmli, U. K. & Adachi, Y. (1999). Nuclear import of RPA in Xenopus egg extracts requires a novel protein XRIPalpha but not importin alpha. EMBO J 18, 4348-4358.
Kaku, N., Matsuda, K., Tsujimura, A. & Kawata, M. (2008). Characterization of nuclear import of the domain-specific androgen receptor in association with the importin alpha/beta and Ran-guanosine 5''-triphosphate systems. Endocrinology 149, 3960-3969.
Kiehl, A. & Dorsky, D. I. (1991). Cooperation of EBV DNA polymerase and EA-D(BMRF1) in vitro and colocalization in nuclei of infected cells. Virology 184, 330-340.
Klein, E., Kis, L. L. & Klein, G. (2007). Epstein-Barr virus infection in humans: from harmless to life endangering virus-lymphocyte interactions. Oncogene 26, 1297-1305.
Kudoh, A., Iwahori, S., Sato, Y., Nakayama, S., Isomura, H., Murata, T. & Tsurumi, T. (2009). Homologous recombinational repair factors are recruited and loaded onto the viral DNA genome in Epstein-Barr virus replication compartments. J Virol 83, 6641-6651.
Kunkel, T. A., Meyer, R. R. & Loeb, L. A. (1979). Single-strand binding protein enhances fidelity of DNA synthesis in vitro. Proc Natl Acad Sci U S A 76, 6331-6335.
Lee, S. S. & Lehman, I. R. (1997). Unwinding of the box I element of a herpes simplex virus type 1 origin by a complex of the viral origin binding protein, single-strand DNA binding protein, and single-stranded DNA. Proc Natl Acad Sci U S A 94, 2838-2842.
Leinbach, S. S. & Heath, L. S. (1988). A carboxyl-terminal peptide of the DNA-binding protein ICP8 of herpes simplex virus contains a single-stranded DNA-binding site. Virology 166, 10-16.
Leinbach, S. S. & Heath, L. S. (1989). Characterization of the single-stranded DNA-binding domain of the herpes simplex virus protein ICP8. Biochim Biophys Acta 1008, 281-286.
Li, H., Ikuta, K., Sixbey, J. W. & Tibbetts, S. A. (2008). A replication-defective gammaherpesvirus efficiently establishes long-term latency in macrophages but not in B cells in vivo. J Virol 82, 8500-8508.
Li, Q., Spriggs, M. K., Kovats, S., Turk, S. M., Comeau, M. R., Nepom, B. & Hutt-Fletcher, L. M. (1997). Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J Virol 71, 4657-4662.
Lin, J. C., Sista, N. D., Besencon, F., Kamine, J. & Pagano, J. S. (1991). Identification and functional characterization of Epstein-Barr virus DNA polymerase by in vitro transcription-translation of a cloned gene. J Virol 65, 2728-2731.
Lin, S. F., Hsu, T. Y., Liu, M. Y., Lin, L. S., Yang, H. L., Chen, J. Y. & Yang, C. S. (1995). Characterization of Epstein-Barr virus DNase and its interaction with the major DNA binding protein. Virology 208, 712-722.
Mapelli, M., Muhleisen, M., Persico, G., van Der Zandt, H. & Tucker, P. A. (2000). The 60-residue C-terminal region of the single-stranded DNA binding protein of herpes simplex virus type 1 is required for cooperative DNA binding. J Virol 74, 8812-8822.
Mapelli, M., Panjikar, S. & Tucker, P. A. (2005). The crystal structure of the herpes simplex virus 1 ssDNA-binding protein suggests the structural basis for flexible, cooperative single-stranded DNA binding. J Biol Chem 280, 2990-2997.
Meyer, R. R., Glassberg, J. & Kornberg, A. (1979). An Escherichia coli mutant defective in single-strand binding protein is defective in DNA replication. Proc Natl Acad Sci U S A 76, 1702-1705.
Miyashita, E. M., Yang, B., Babcock, G. J. & Thorley-Lawson, D. A. (1997). Identification of the site of Epstein-Barr virus persistence in vivo as a resting B cell. J Virol 71, 4882-4891.
Mumtsidu, E., Makhov, A. M., Konarev, P. V., Svergun, D. I., Griffith, J. D. & Tucker, P. A. (2008). Structural features of the single-stranded DNA-binding protein of Epstein-Barr virus. J Struct Biol 161, 172-187.
Nakayama, S., Murata, T., Murayama, K., Yasui, Y., Sato, Y., Kudoh, A., Iwahori, S., Isomura, H., Kanda, T. & Tsurumi, T. (2009). Epstein-Barr virus polymerase processivity factor enhances BALF2 promoter transcription as a coactivator for the BZLF1 immediate-early protein. J Biol Chem 284, 21557-21568.
Niedobitek, G., Young, L. S., Lau, R., Brooks, L., Greenspan, D., Greenspan, J. S. & Rickinson, A. B. (1991). Epstein-Barr virus infection in oral hairy leukoplakia: virus replication in the absence of a detectable latent phase. J Gen Virol 72 ( Pt 12), 3035-3046.
Nimonkar, A. V. & Boehmer, P. E. (2003). The herpes simplex virus type-1 single-strand DNA-binding protein (ICP8) promotes strand invasion. J Biol Chem 278, 9678-9682.
Old, L. J., Boyse, E. A., Oettgen, H. F., Harven, E. D., Geering, G., Williamson, B. & Clifford, P. (1966). Precipitating Antibody in Human Serum to an Antigen Present in Cultured Burkitt''s Lymphoma Cells. Proc Natl Acad Sci U S A 56, 1699-1704.
Reuven, N. B. & Weller, S. K. (2005). Herpes simplex virus type 1 single-strand DNA binding protein ICP8 enhances the nuclease activity of the UL12 alkaline nuclease by increasing its processivity. J Virol 79, 9356-9358.
Sarisky, R. T., Gao, Z., Lieberman, P. M., Fixman, E. D., Hayward, G. S. & Hayward, S. D. (1996). A replication function associated with the activation domain of the Epstein-Barr virus Zta transactivator. J Virol 70, 8340-8347.
Schepers, A., Ritzi, M., Bousset, K., Kremmer, E., Yates, J. L., Harwood, J., Diffley, J. F. & Hammerschmidt, W. (2001). Human origin recognition complex binds to the region of the latent origin of DNA replication of Epstein-Barr virus. EMBO J 20, 4588-4602.
Sherman, L. A. & Gefter, M. L. (1976). Studies on the mechanism of enzymatic DNA elongation by Escherichia coli DNA polymerase II. J Mol Biol 103, 61-76.
Shire, K., Ceccarelli, D. F., Avolio-Hunter, T. M. & Frappier, L. (1999). EBP2, a human protein that interacts with sequences of the Epstein-Barr virus nuclear antigen 1 important for plasmid maintenance. J Virol 73, 2587-2595.
Sigal, N., Delius, H., Kornberg, T., Gefter, M. L. & Alberts, B. (1972). A DNA-unwinding protein isolated from Escherichia coli: its interaction with DNA and with DNA polymerases. Proc Natl Acad Sci U S A 69, 3537-3541.
Sixbey, J. W., Vesterinen, E. H., Nedrud, J. G., Raab-Traub, N., Walton, L. A. & Pagano, J. S. (1983). Replication of Epstein-Barr virus in human epithelial cells infected in vitro. Nature 306, 480-483.
Sorokin, A. V., Kim, E. R. & Ovchinnikov, L. P. (2007). Nucleocytoplasmic transport of proteins. Biochemistry (Mosc) 72, 1439-1457.
Stallings, C. L. & Silverstein, S. (2005). Dissection of a novel nuclear localization signal in open reading frame 29 of varicella-zoster virus. J Virol 79, 13070-13081.
Tovey, M. G., Lenoir, G. & Begon-Lours, J. (1978). Activation of latent Epstein-Barr virus by antibody to human IgM. Nature 276, 270-272.
Tsurumi, T., Daikoku, T., Kurachi, R. & Nishiyama, Y. (1993). Functional interaction between Epstein-Barr virus DNA polymerase catalytic subunit and its accessory subunit in vitro. J Virol 67, 7648-7653.
Tsurumi, T., Kishore, J., Yokoyama, N., Fujita, M., Daikoku, T., Yamada, H., Yamashita, Y. & Nishiyama, Y. (1998). Overexpression, purification and helix-destabilizing properties of Epstein-Barr virus ssDNA-binding protein. J Gen Virol 79 ( Pt 5), 1257-1264.
Tsurumi, T., Kobayashi, A., Tamai, K., Yamada, H., Daikoku, T., Yamashita, Y. & Nishiyama, Y. (1996). Epstein-Barr virus single-stranded DNA-binding protein: purification, characterization, and action on DNA synthesis by the viral DNA polymerase. Virology 222, 352-364.
Wang, T. C. & Smith, K. C. (1982). Effects of the ssb-1 and ssb-113 mutations on survival and DNA repair in UV-irradiated delta uvrB strains of Escherichia coli K-12. J Bacteriol 151, 186-192.
Wang, Y. S. & Hall, J. D. (1990). Characterization of a major DNA-binding domain in the herpes simplex virus type 1 DNA-binding protein (ICP8). J Virol 64, 2082-2089.
Weiss, L. M., Strickler, J. G., Warnke, R. A., Purtilo, D. T. & Sklar, J. (1987). Epstein-Barr viral DNA in tissues of Hodgkin''s disease. Am J Pathol 129, 86-91.
Wickner, S. (1977). DNA or RNA priming of bacteriophage G4 DNA synthesis by Escherichia coli dnaG protein. Proc Natl Acad Sci U S A 74, 2815-2819.
Wold, M. S. & Kelly, T. (1988). Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc Natl Acad Sci U S A 85, 2523-2527.
Wu, C. C., Chen, M. C., Chang, Y. R., Hsu, T. Y. & Chen, J. Y. (2004). Identification and characterization of the conserved nucleoside-binding sites in the Epstein-Barr virus thymidine kinase. Biochem J 379, 795-803.
Wu, C. C., Liu, M. T., Chang, Y. T., Fang, C. Y., Chou, S. P., Liao, H. W., Kuo, K. L., Hsu, S. L., Chen, Y. R., Wang, P. W., Chen, Y. L., Chuang, H. Y., Lee, C. H., Chen, M., Wayne Chang, W. S. & Chen, J. Y. (2010). Epstein-Barr virus DNase (BGLF5) induces genomic instability in human epithelial cells. Nucleic Acids Res 38, 1932-1949.
Yang, P. W., Chang, S. S., Tsai, C. H., Chao, Y. H. & Chen, M. R. (2008). Effect of phosphorylation on the transactivation activity of Epstein-Barr virus BMRF1, a major target of the viral BGLF4 kinase. J Gen Virol 89, 884-895.
Yokoyama, N., Fujii, K., Hirata, M., Tamai, K., Kiyono, T., Kuzushima, K., Nishiyama, Y., Fujita, M. & Tsurumi, T. (1999). Assembly of the epstein-barr virus BBLF4, BSLF1 and BBLF2/3 proteins and their interactive properties. J Gen Virol 80 ( Pt 11), 2879-2887.
Zeng, Y., Middeldorp, J., Madjar, J. J. & Ooka, T. (1997). A major DNA binding protein encoded by BALF2 open reading frame of Epstein-Barr virus (EBV) forms a complex with other EBV DNA-binding proteins: DNAase, EA-D, and DNA polymerase. Virology 239, 285-295.
Zimber, U., Adldinger, H. K., Lenoir, G. M., Vuillaume, M., Knebel-Doeberitz, M. V., Laux, G., Desgranges, C., Wittmann, P., Freese, U. K., Schneider, U. & et al. (1986). Geographical prevalence of two types of Epstein-Barr virus. Virology 154, 56-66.
Zou, Y., Liu, Y., Wu, X. & Shell, S. M. (2006). Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol 208, 267-273.
zur Hausen, H., O''Neill, F. J., Freese, U. K. & Hecker, E. (1978). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272, 373-375.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔