|
1Spudich, J. L., Yang, C. S., Jung, K. H. & Spudich, E. N. Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 16, 365-392, doi:10.1146/annurev.cellbio.16.1.36516/1/365 [pii] (2000). 2Rao, V. R. & Oprian, D. D. Activating mutations of rhodopsin and other G protein-coupled receptors. Annu Rev Biophys Biomol Struct 25, 287-314, doi:10.1146/annurev.bb.25.060196.001443 (1996). 3Lanyi, J. K. Progress toward an explicit mechanistic model for the light-driven pump, bacteriorhodopsin. FEBS Lett 464, 103-107, doi:S0014-5793(99)01685-3 [pii] (1999). 4Haupts, U., Tittor, J. & Oesterhelt, D. Closing in on bacteriorhodopsin: progress in understanding the molecule. Annu Rev Biophys Biomol Struct 28, 367-399, doi:10.1146/annurev.biophys.28.1.367 (1999). 5W. R. Briggs, J. L. S. Handbook of Photosensory Receptors., (2005). 6Oesterhelt, D. & Stoeckenius, W. Functions of a new photoreceptor membrane. Proc Natl Acad Sci U S A 70, 2853-2857 (1973). 7Matsuno-Yagi, A. & Mukohata, Y. Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun 78, 237-243, doi:0006-291X(77)91245-1 [pii] (1977). 8Bogomolni, R. A. & Spudich, J. L. Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sci U S A 79, 6250-6254 (1982). 9Takahashi, T., Mochizuki, Y., Kamo, N. & Kobatake, Y. Evidence that the long-lifetime photointermediate of s-rhodopsin is a receptor for negative phototaxis in Halobacterium halobium. Biochem Biophys Res Commun 127, 99-105, doi:S0006-291X(85)80131-5 [pii] (1985). 10Beja, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902-1906, doi:8832 [pii] (2000). 11Brown, L. S. & Jung, K. H. Bacteriorhodopsin-like proteins of eubacteria and fungi: the extent of conservation of the haloarchaeal proton-pumping mechanism. Photochem Photobiol Sci 5, 538-546, doi:10.1039/b514537f (2006). 12Fuhrman, J. A., Schwalbach, M. S. & Stingl, U. Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol 6, 488-494, doi:nrmicro1893 [pii]10.1038/nrmicro1893 (2008). 13Balashov, S. P. et al. Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309, 2061-2064, doi:309/5743/2061 [pii]10.1126/science.1118046 (2005). 14Balashov, S. P. & Lanyi, J. K. Xanthorhodopsin: Proton pump with a carotenoid antenna. Cell Mol Life Sci 64, 2323-2328, doi:10.1007/s00018-007-7167-y (2007). 15Waschuk, S. A., Bezerra, A. G., Jr., Shi, L. & Brown, L. S. Leptosphaeria rhodopsin: bacteriorhodopsin-like proton pump from a eukaryote. Proc Natl Acad Sci U S A 102, 6879-6883, doi:0409659102 [pii]10.1073/pnas.0409659102 (2005). 16Tsunoda, S. P. et al. H+ -pumping rhodopsin from the marine alga Acetabularia. Biophys J 91, 1471-1479, doi:S0006-3495(06)71858-6 [pii]10.1529/biophysj.106.086421 (2006). 17Hoff, W. D., Jung, K. H. & Spudich, J. L. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys Biomol Struct 26, 223-258, doi:10.1146/annurev.biophys.26.1.223 (1997). 18Spudich, J. L. The multitalented microbial sensory rhodopsins. Trends Microbiol 14, 480-487, doi:S0966-842X(06)00231-9 [pii]10.1016/j.tim.2006.09.005 (2006). 19Jung, K. H., Trivedi, V. D. & Spudich, J. L. Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol 47, 1513-1522, doi:3395 [pii] (2003). 20Oesterhelt, D. & Stoeckenius, W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233, 149-152 (1971). 21Henderson, R. et al. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213, 899-929 (1990). 22Lozier, R. H., Bogomolni, R. A. & Stoeckenius, W. Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium. Biophys J 15, 955-962, doi:S0006-3495(75)85875-9 [pii]10.1016/S0006-3495(75)85875-9 (1975). 23Lanyi, J. K. Bacteriorhodopsin. Annu Rev Physiol 66, 665-688, doi:10.1146/annurev.physiol.66.032102.150049 (2004). 24Lanyi, J. K. Proton transfers in the bacteriorhodopsin photocycle. Biochim Biophys Acta 1757, 1012-1018, doi:S0005-2728(05)00256-2 [pii]10.1016/j.bbabio.2005.11.003 (2006). 25Brown, L. S. et al. Glutamic-Acid-204 Is the Terminal Proton Release Group at the Extracellular Surface of Bacteriorhodopsin. Journal of Biological Chemistry 270, 27122-27126 (1995). 26Xiao, Y., Hutson, M. S., Belenky, M., Herzfeld, J. & Braiman, M. S. Role of arginine-82 in fast proton release during the bacteriorhodopsin photocycle: a time-resolved FT-IR study of purple membranes containing 15N-labeled arginine. Biochemistry 43, 12809-12818, doi:10.1021/bi049238g (2004). 27Rammelsberg, R., Huhn, G., Lubben, M. & Gerwert, K. Bacteriorhodopsin''s intramolecular proton-release pathway consists of a hydrogen-bonded network. Biochemistry 37, 5001-5009, doi:10.1021/bi971701kbi971701k [pii] (1998). 28Spassov, V. Z., Luecke, H., Gerwert, K. & Bashford, D. pK(a) calculations suggest storage of an excess proton in a hydrogen-bonded water network in bacteriorhodopsin. Journal of Molecular Biology 312, 203-219, doi:DOI 10.1006/jmbi.2001.4902 (2001). 29Szaraz, S., Oesterhelt, D. & Ormos, P. pH-induced structural changes in bacteriorhodopsin studied by Fourier transform infrared spectroscopy. Biophys J 67, 1706-1712, doi:S0006-3495(94)80644-7 [pii]10.1016/S0006-3495(94)80644-7 (1994). 30Schobert, B., Brown, L. S. & Lanyi, J. K. Crystallographic intermediates of structures of the M and N bacteriorhodopsin: Assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base. Journal of Molecular Biology 330, 553-570, doi:Doi 10.1016/S0022-2836(03)00576-X (2003). 31Dellago, C., Naor, M. M. & Hummer, G. Proton transport through water-filled carbon nanotubes. Physical Review Letters 90, -, doi:Artn 105902Doi 10.1103/Physrevlett.90.105902 (2003). 32Schobert, B., Cupp-Vickery, J., Hornak, V., Smith, S. O. & Lanyi, J. K. Crystallographic structure of the K intermediate of bacteriorhodopsin: Conservation of free energy after photoisomerization of the retinal. Journal of Molecular Biology 321, 715-726, doi:Doi 10.1016/S0022-2836(02)00681-2 (2002). 33Lanyi, J. K. & Schobert, B. Mechanism of proton transport in bacteriorhodopsin from crystallographic structures of the K, L, M1, M2, and M2'' intermediates of the photocycle. J Mol Biol 328, 439-450, doi:S0022283603002638 [pii] (2003). 34Luecke, H. et al. Coupling photoisomerization of retinal to directional transport in bacteriorhodopsin. Journal of Molecular Biology 300, 1237-1255 (2000). 35Luecke, H. Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump. Bba-Bioenergetics 1460, 133-156 (2000). 36Balashov, S. P., Imasheva, E. S., Govindjee, R. & Ebrey, T. G. Titration of aspartate-85 in bacteriorhodopsin: What it says about chromophore isomerization and proton release. Biophysical Journal 70, 473-481 (1996). 37Richter, H. T., Brown, L. S., Needleman, R. & Lanyi, J. K. A linkage of the pKa''s of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin. Biochemistry 35, 4054-4062, doi:10.1021/bi952883qbi952883q [pii] (1996). 38Varo, G. & Lanyi, J. K. Kinetic and Spectroscopic Evidence for an Irreversible Step between Deprotonation and Reprotonation of the Schiff-Base in the Bacteriorhodopsin Photocycle. Biochemistry 30, 5008-5015 (1991). 39Zimanyi, L. et al. The two consecutive M substates in the photocycle of bacteriorhodopsin are affected specifically by the D85N and D96N residue replacements. Photochem Photobiol 56, 1049-1055 (1992). 40Lanyi, J. & Schobert, B. Crystallographic structure of the retinal and the protein after deprotonation of the Schiff base: the switch in the bacteriorhodopsin photocycle. J Mol Biol 321, 727-737, doi:S0022283602006824 [pii] (2002). 41Zscherp, C., Schlesinger, R., Tittor, J., Oesterhelt, D. & Heberle, J. In situ determination of transient pK(a) changes of internal amino acids of bacteriorhodopsin by using time-resolved attenuated total reflection Fourier-transform infrared spectroscopy. P Natl Acad Sci USA 96, 5498-5503 (1999). 42Dioumaev, A. K., Brown, L. S., Needleman, R. & Lanyi, J. K. Coupling of the reisomerization of the retinal, proton uptake, and reprotonation of Asp-96 in the N photointermediate of bacteriorhodopsin. Biochemistry 40, 11308-11317, doi:bi011027d [pii] (2001). 43Brown, L. S. & Lanyi, J. K. Determination of the transiently lowered pKa of the retinal Schiff base during the photocycle of bacteriorhodopsin. Proc Natl Acad Sci U S A 93, 1731-1734 (1996). 44Rouhani, S. et al. Crystal structure of the D85S mutant of bacteriorhodopsin: model of an O-like photocycle intermediate. J Mol Biol 313, 615-628, doi:10.1006/jmbi.2001.5066S0022-2836(01)95066-1 [pii] (2001). 45Baliga, N. S. et al. Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome Res 14, 2221-2234, doi:14/11/2221 [pii]10.1101/gr.2700304 (2004). 46傅煦媛. 表現 Haloarcula marismortui 之六個光感受體揭露其獨特的感光特性 碩士 thesis, 國立台灣大學, (2008). 47劉康正. Haloarcula marismortui 中 HmBRI 及 HmBRII 蛋白質特性及功能研究 碩士 thesis, 國立台灣大學, (2009). 48黃敬哲. 以生物科技生產 Haloarcula marismortui HmBRI 蛋白質在生物工業上應用之研究 碩士 thesis, 國立台灣大學, (2009). 49Schoneberg, T., Schulz, A. & Gudermann, T. The structural basis of G-protein-coupled receptor function and dysfunction in human diseases. Rev Physiol Biochem Pharmacol 144, 143-227 (2002). 50Fredriksson, R. & Schioth, H. B. The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol 67, 1414-1425, doi:DOI 10.1124/mol.104.009001 (2005). 51Filmore, D. It''s a GPCR World. Modern Drug Discovery (2004). 52Rubin, G. M. et al. Comparative genomics of the eukaryotes. Science 287, 2204-2215, doi:8396 [pii] (2000). 53Bryson-Richardson, R. J., Logan, D. W., Currie, P. D. & Jackson, I. J. Large-scale analysis of gene structure in rhodopsin-like GPCRs: evidence for widespread loss of an ancient intron. Gene 338, 15-23, doi:10.1016/j.gene.2004.05.001S0378111904002665 [pii] (2004). 54Xue, C., Hsueh, Y. P. & Heitman, J. Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 32, 1010-1032, doi:FMR131 [pii]10.1111/j.1574-6976.2008.00131.x (2008). 55Hartwell, L. H. Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone. J Cell Biol 85, 811-822 (1980). 56Burkholder, A. C. & Hartwell, L. H. The yeast alpha-factor receptor: structural properties deduced from the sequence of the STE2 gene. Nucleic Acids Res 13, 8463-8475 (1985). 57Hagen, D. C., McCaffrey, G. & Sprague, G. F., Jr. Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor. Proc Natl Acad Sci U S A 83, 1418-1422 (1986). 58Han, K. H., Seo, J. A. & Yu, J. H. A putative G protein-coupled receptor negatively controls sexual development in Aspergillus nidulans. Mol Microbiol 51, 1333-1345, doi:10.1111/j.1365-2958.2003.03940.xMMI3940 [pii] (2004). 59Chung, S. et al. Molecular analysis of CPRalpha, a MATalpha-specific pheromone receptor gene of Cryptococcus neoformans. Eukaryot Cell 1, 432-439 (2002). 60Plakidou-Dymock, S., Dymock, D. & Hooley, R. A higher plant seven-transmembrane receptor that influences sensitivity to cytokinins. Current Biology 8, 315-324 (1998). 61Chen, J. G. et al. GCR1 can act independently of heterotrimeric G-protein in response to brassinosteroids and gibberellins in Arabidopsis seed germination. Plant Physiol 135, 907-915, doi:DOI 10.1104/pp.104.038992 (2004). 62Pandey, S. & Assmann, S. M. The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein alpha subunit GPA1 and regulates abscisic acid signaling. Plant Cell 16, 1616-1632, doi:10.1105/tpc.020321tpc.020321 [pii] (2004). 63Assmann, S. M. G protein signaling in the regulation of Arabidopsis seed germination. Sci STKE 2005, cm11, doi:stke.3082005cm11 [pii]10.1126/stke.3082005cm11 (2005). 64Pandey, S., Chen, J. G., Jones, A. M. & Assmann, S. M. G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and postgermination development. Plant Physiol 141, 243-256, doi:DOI 10.1104/pp.106.079038 (2006). 65Warpeha, K. M. et al. G-protein-coupled receptor 1, G-protein Galpha-subunit 1, and prephenate dehydratase 1 are required for blue light-induced production of phenylalanine in etiolated Arabidopsis. Plant Physiol 140, 844-855, doi:pp.105.071282 [pii]10.1104/pp.105.071282 (2006). 66Warpeha, K. M. et al. The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis. Plant Physiol 143, 1590-1600, doi:DOI 10.1104/pp.106.089904 (2007). 67Misra, S., Wu, Y., Venkataraman, G., Sopory, S. K. & Tuteja, N. Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. Plant J 51, 656-669, doi:TPJ3169 [pii]10.1111/j.1365-313X.2007.03169.x (2007). 68Attwood, T. K. & Findlay, J. B. Fingerprinting G-protein-coupled receptors. Protein Eng 7, 195-203 (1994). 69Suga, H. & Haga, T. Ligand screening system using fusion proteins of G protein-coupled receptors with G protein alpha subunits. Neurochemistry International 51, 140-164, doi:DOI 10.1016/j.neuint.2007.06.006 (2007). 70Palczewski, K. et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739-745 (2000). 71Murakami, M. & Kouyama, T. Crystal structure of squid rhodopsin. Nature 453, 363-U333, doi:Doi 10.1038/Nature06925 (2008). 72Cherezov, V. et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258-1265, doi:1150577 [pii]10.1126/science.1150577 (2007). 73Warne, T. et al. Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454, 486-491, doi:nature07101 [pii]10.1038/nature07101 (2008). 74Jaakola, V. P. et al. The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211-1217, doi:1164772 [pii]10.1126/science.1164772 (2008). 75Tuteja, N. Signaling through G protein coupled receptors. Plant Signal Behav 4, 942-947, doi:9530 [pii] (2009). 76Terrillon, S. & Bouvier, M. Roles of G-protein-coupled receptor dimerization. EMBO Rep 5, 30-34, doi:10.1038/sj.embor.74000527400052 [pii] (2004). 77Marshall, F. H., Jones, K. A., Kaupmann, K. & Bettler, B. GABAB receptors - the first 7TM heterodimers. Trends Pharmacol Sci 20, 396-399, doi:S0165-6147(99)01383-8 [pii] (1999). 78Xu, J. et al. Heterodimerization of alpha 2A- and beta 1-adrenergic receptors. J Biol Chem 278, 10770-10777, doi:10.1074/jbc.M207968200M207968200 [pii] (2003). 79Hillion, J. et al. Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J Biol Chem 277, 18091-18097, doi:10.1074/jbc.M107731200M107731200 [pii] (2002). 80Yang, C. S., Sineshchekov, O., Spudich, E. N. & Spudich, J. L. The cytoplasmic membrane-proximal domain of the HtrII transducer interacts with the E-F loop of photoactivated Natronomonas pharaonis sensory rhodopsin II. J Biol Chem 279, 42970-42976, doi:10.1074/jbc.M406504200M406504200 [pii] (2004). 81Etzkorn, M. et al. Complex Formation and Light Activation in Membrane-Embedded Sensory Rhodopsin II as Seen by Solid-State NMR Spectroscopy. Structure 18, 293-300, doi:DOI 10.1016/j.str.2010.01.011 (2010). 82Yoshitsugu, M., Yamada, J. & Kandori, H. Color-Changing Mutation in the E-F Loop of Proteorhodopsin. Biochemistry 48, 4324-4330, doi:Doi 10.1021/Bi900228a (2009). 83Subramaniam, S. & Henderson, R. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature 406, 653-657, doi:10.1038/35020614 (2000). 84Acharya, S., Saad, Y. & Karnik, S. S. Transducin-alpha C-terminal peptide binding site consists of C-D and E-F loops of rhodopsin. Journal of Biological Chemistry 272, 6519-6524 (1997). 85Scheerer, P. et al. Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497-U430, doi:Doi 10.1038/Nature07330 (2008). 86Wong, S. K. F., Parker, E. M. & Ross, E. M. Chimeric Muscarinic Cholinergic Beta-Adrenergic Receptors That Activate Gs in Response to Muscarinic Agonists. Journal of Biological Chemistry 265, 6219-6224 (1990). 87Wade, S. M., Scribner, M. K., Dalman, H. M., Taylor, J. M. & Neubig, R. R. Structural requirements for G(o) activation by receptor-derived peptides: activation and modulation domains of the alpha 2-adrenergic receptor i3c region. Mol Pharmacol 50, 351-358 (1996). 88Ulfers, A. L. et al. Cannabinoid receptor-G protein interactions: G(alphai1)-bound structures of IC3 and a mutant with altered G protein specificity. Protein Sci 11, 2526-2531, doi:10.1110/ps.0218402 (2002). 89Bellot, G. et al. Structure of the Third Intracellular Loop of the Vasopressin V2 Receptor and Conformational Changes upon Binding to gC1qR. Journal of Molecular Biology 388, 491-507, doi:DOI 10.1016/j.jmb.2009.02.065 (2009). 90Kang, H. et al. Molecular analysis of the interaction between the intracellular loops of the human serotonin receptor type 6 (5-HT6) and the alpha subunit of GS protein. Biochem Biophys Res Commun 329, 684-692, doi:S0006-291X(05)00295-0 [pii]10.1016/j.bbrc.2005.02.040 (2005). 91Stefan, C. J. & Blumer, K. J. The third cytoplasmic loop of a yeast G-protein-coupled receptor controls pathway activation, ligand discrimination, and receptor internalization. Mol Cell Biol 14, 3339-3349 (1994). 92Yun, C. W., Tamaki, H., Nakayama, R., Yamamoto, K. & Kumagai, H. G-protein coupled receptor from yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 240, 287-292, doi:S0006-291X(97)97649-X [pii]10.1006/bbrc.1997.7649 (1997). 93Xue, C., Bahn, Y. S., Cox, G. M. & Heitman, J. G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. Mol Biol Cell 17, 667-679, doi:E05-07-0699 [pii]10.1091/mbc.E05-07-0699 (2006). 94Geiser, A. H. et al. Bacteriorhodopsin chimeras containing the third cytoplasmic loop of bovine rhodopsin activate transducin for GTP/GDP exchange. Protein Sci 15, 1679-1690, doi:15/7/1679 [pii]10.1110/ps.062192306 (2006). 95Kim, J. M. et al. Light-driven activation of beta 2-adrenergic receptor signaling by a chimeric rhodopsin containing the beta 2-adrenergic receptor cytoplasmic loops. Biochemistry 44, 2284-2292, doi:10.1021/bi048328i (2005). 96Miroux, B. & Walker, J. E. Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. Journal of Molecular Biology 260, 289-298 (1996). 97黃慶鑫. 阿拉伯芥G蛋白訊息傳遞系統和G蛋白訊息調節蛋白質分子機制探討 碩士 thesis, 國立台灣大學, (2008). 98Johnston, C. A. et al. GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. P Natl Acad Sci USA 104, 17317-17322, doi:DOI 10.1073/pnas.0704751104 (2007).
|