|
1.Organization, W.H., The global burden of disease: 2004 update. 2008. 2.Department of Health, E.Y., R.O.C.(TAIWAN), 2008 statistics of causes of death- Table6 Number of Deaths from Leading Cancer Causes of Death by Gender. 2008, Department of Health, Executive Yuan, R.O.C.(TAIWAN). 3.El-Serag, H.B. and K.L. Rudolph, Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 2007. 132(7): p. 2557-76. 4.Bosch, F.X., et al., Primary liver cancer: worldwide incidence and trends. Gastroenterology, 2004. 127(5 Suppl 1): p. S5-S16. 5.Bosch, F.X., et al., Epidemiology of hepatocellular carcinoma. Clin Liver Dis, 2005. 9(2): p. 191-211, v. 6.Kew, M.C., Epidemiology of chronic hepatitis B virus infection, hepatocellular carcinoma, and hepatitis B virus-induced hepatocellular carcinoma. Pathol Biol (Paris), 2010. 7.Corrao, G., et al., A meta-analysis of alcohol consumption and the risk of 15 diseases. Prev Med, 2004. 38(5): p. 613-9. 8.Groopman, J.D., P. Scholl, and J.S. Wang, Epidemiology of human aflatoxin exposures and their relationship to liver cancer. Genetics and Cancer Susceptibility, 1996. 395: p. 211-222. 9.Bugianesi, E., et al., Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology, 2002. 123(1): p. 134-40. 10.El-Serag, H.B., T. Tran, and J.E. Everhart, Diabetes increases the risk of chronic liver disease and hepatocellular carcinoma. Gastroenterology, 2004. 126(2): p. 460-8. 11.Cancer incidence in five continents. Volume VIII. IARC Sci Publ, 2002(155): p. 1-781. 12.Ruggieri, A., C. Barbati, and W. Malorni, Cellular and molecular mechanisms involved in hepatocellular carcinoma gender disparity. Int J Cancer, 2010. 13.Khoruts, A., et al., Circulating tumor necrosis factor, interleukin-1 and interleukin-6 concentrations in chronic alcoholic patients. Hepatology, 1991. 13(2): p. 267-76. 14.Dogru, T., et al., Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am J Gastroenterol, 2008. 103(12): p. 3217-8. 15.Naugler, W.E. and M. Karin, The wolf in sheep''s clothing: the role of interleukin-6 in immunity, inflammation and cancer. Trends Mol Med, 2008. 14(3): p. 109-19. 16.Naugler, W.E., et al., Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science, 2007. 317(5834): p. 121-4. 17.Yu, M.W., et al., Role of reproductive factors in hepatocellular carcinoma: Impact on hepatitis B- and C-related risk. Hepatology, 2003. 38(6): p. 1393-400. 18.Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993. 75(5): p. 843-54. 19.Wightman, B., I. Ha, and G. Ruvkun, Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 1993. 75(5): p. 855-62. 20.Griffiths-Jones, S., et al., miRBase: tools for microRNA genomics. Nucleic Acids Res, 2008. 36(Database issue): p. D154-8. 21.Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005. 120(1): p. 15-20. 22.Rodriguez, A., et al., Identification of mammalian microRNA host genes and transcription units. Genome Res, 2004. 14(10A): p. 1902-10. 23.Yekta, S., I.H. Shih, and D.P. Bartel, MicroRNA-directed cleavage of HOXB8 mRNA. Science, 2004. 304(5670): p. 594-6. 24.Wu, L., J. Fan, and J.G. Belasco, MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A, 2006. 103(11): p. 4034-9. 25.Brennecke, J., et al., Principles of microRNA-target recognition. PLoS Biol, 2005. 3(3): p. e85. 26.Lewis, B.P., et al., Prediction of mammalian microRNA targets. Cell, 2003. 115(7): p. 787-98. 27.Calin, G.A., et al., Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 2004. 101(9): p. 2999-3004. 28.Lu, J., et al., MicroRNA expression profiles classify human cancers. Nature, 2005. 435(7043): p. 834-8. 29.Lee, Y., et al., The nuclear RNase III Drosha initiates microRNA processing. Nature, 2003. 425(6956): p. 415-9. 30.Tomari, Y. and P.D. Zamore, MicroRNA biogenesis: drosha can''t cut it without a partner. Curr Biol, 2005. 15(2): p. R61-4. 31.Han, J., et al., The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev, 2004. 18(24): p. 3016-27. 32.Lee, Y., et al., Drosha in primary microRNA processing. Cold Spring Harb Symp Quant Biol, 2006. 71: p. 51-7. 33.Han, J., et al., Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell, 2006. 125(5): p. 887-901. 34.Wang, Y., et al., DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet, 2007. 39(3): p. 380-5. 35.Yi, R., et al., Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 2003. 17(24): p. 3011-6. 36.Kim, V.N., MicroRNA precursors in motion: exportin-5 mediates their nuclear export. Trends Cell Biol, 2004. 14(4): p. 156-9. 37.Lund, E., et al., Nuclear export of microRNA precursors. Science, 2004. 303(5654): p. 95-8. 38.Schwarz, D.S., et al., Asymmetry in the assembly of the RNAi enzyme complex. Cell, 2003. 115(2): p. 199-208. 39.Khvorova, A., A. Reynolds, and S.D. Jayasena, Functional siRNAs and miRNAs exhibit strand bias. Cell, 2003. 115(2): p. 209-16. 40.Denli, A.M., et al., Processing of primary microRNAs by the Microprocessor complex. Nature, 2004. 432(7014): p. 231-5. 41.Gregory, R.I., et al., The Microprocessor complex mediates the genesis of microRNAs. Nature, 2004. 432(7014): p. 235-40. 42.Suzuki, H.I., et al., Modulation of microRNA processing by p53. Nature, 2009. 460(7254): p. 529-33. 43.Guil, S. and J.F. Caceres, The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nat Struct Mol Biol, 2007. 14(7): p. 591-6. 44.Fuller-Pace, F.V. and S. Ali, The DEAD box RNA helicases p68 (Ddx5) and p72 (Ddx17): novel transcriptional co-regulators. Biochem Soc Trans, 2008. 36(Pt 4): p. 609-12. 45.Fuller-Pace, F.V., DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res, 2006. 34(15): p. 4206-15. 46.Fukuda, T., et al., DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol, 2007. 9(5): p. 604-11. 47.Davis, B.N., et al., SMAD proteins control DROSHA-mediated microRNA maturation. Nature, 2008. 454(7200): p. 56-61. 48.Ruggiero, T., et al., LPS induces KH-type splicing regulatory protein-dependent processing of microRNA-155 precursors in macrophages. FASEB J, 2009. 23(9): p. 2898-908. 49.Trabucchi, M., et al., The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature, 2009. 459(7249): p. 1010-4. 50.Viswanathan, S.R., G.Q. Daley, and R.I. Gregory, Selective blockade of microRNA processing by Lin28. Science, 2008. 320(5872): p. 97-100. 51.Heo, I., et al., TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell, 2009. 138(4): p. 696-708. 52.Sakamoto, S., et al., The NF90-NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol Cell Biol, 2009. 29(13): p. 3754-69. 53.Ota, A., et al., Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res, 2004. 64(9): p. 3087-95. 54.Rao, P.H., et al., Chromosomal and gene amplification in diffuse large B-cell lymphoma. Blood, 1998. 92(1): p. 234-40. 55.Neat, M.J., et al., Localisation of a novel region of recurrent amplification in follicular lymphoma to an approximately 6.8 Mb region of 13q32-33. Genes Chromosomes Cancer, 2001. 32(3): p. 236-43. 56.Mao, X., et al., Comparative genomic hybridization analysis of primary cutaneous B-cell lymphomas: identification of common genomic alterations in disease pathogenesis. Genes Chromosomes Cancer, 2002. 35(2): p. 144-55. 57.Ko, Y.H., et al., Comparative genomic hybridization study of nasal-type NK/T-cell lymphoma. Cytometry, 2001. 46(2): p. 85-91. 58.He, L., et al., A microRNA polycistron as a potential human oncogene. Nature, 2005. 435(7043): p. 828-833. 59.Yan, H.L., et al., Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J, 2009. 28(18): p. 2719-32. 60.O''Donnell, K.A., et al., c-Myc-regulated microRNAs modulate E2F1 expression. Nature, 2005. 435(7043): p. 839-43. 61.Woods, K., J.M. Thomson, and S.M. Hammond, Direct regulation of an oncogenic micro-RNA cluster by E2F transcription factors. J Biol Chem, 2007. 282(4): p. 2130-4. 62.Liu, W.H., et al., MicroRNA-18a prevents estrogen receptor-alpha expression, promoting proliferation of hepatocellular carcinoma cells. Gastroenterology, 2009. 136(2): p. 683-93. 63.Michlewski, G., et al., Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol Cell, 2008. 32(3): p. 383-93. 64.Teramoto, T., et al., p53 gene abnormalities are closely related to hepatoviral infections and occur at a late stage of hepatocarcinogenesis. Cancer Res, 1994. 54(1): p. 231-5. 65.Petitjean, A., et al., Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database (R14, 2009). Hum Mutat, 2007. 28(6): p. 622-9. 66.Hsu, I.C., et al., Mutational hotspot in the p53 gene in human hepatocellular carcinomas. Nature, 1991. 350(6317): p. 427-8. 67.Bressac, B., et al., Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature, 1991. 350(6317): p. 429-31. 68.Oda, T., et al., p53 gene mutation spectrum in hepatocellular carcinoma. Cancer Res, 1992. 52(22): p. 6358-64. 69.Kazachkov, Y., et al., p53 abnormalities in hepatocellular carcinoma from United States patients: analysis of all 11 exons. Carcinogenesis, 1996. 17(10): p. 2207-12. 70.Hussain, S.P., et al., TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene, 2007. 26(15): p. 2166-76. 71.Raver-Shapira, N., et al., Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell, 2007. 26(5): p. 731-43. 72.Davis, B.N. and A. Hata, Regulation of MicroRNA Biogenesis: A miRiad of mechanisms. Cell Commun Signal, 2009. 7: p. 18.
|