1.http://en.wikipedia.org/wiki/Dead_sea Dead Sea - Wikipedia, the free encyclopedia (2010).
2.Oren, A. & Ventosa, A. Benjamin Elazari Volcani (1915-1999): sixty-three years of studies of the microbiology of the Dead Sea. Int Microbiol 2, 195-8 (1999).
3.Oren, A., Ginzburg, M., Ginzburg, B.Z., Hochstein, L.I. & Volcani, B.E. Haloarcula marismortui (Volcani) sp. nov., nom. rev., an extremely halophilic bacterium from the Dead Sea. Int. J. Syst. Bacteriol. 40, 209-10 (1990).
4.Javor, B., Requadt, C. & Stoeckenius, W. Box-shaped halophilic bacteria. J Bacteriol 151, 1532-42 (1982).
5.Mevarech, M., Frolow, F. & Gloss, L.M. Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86, 155-64 (2000).
6.Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289, 905-20 (2000).
7.Martinez, S.E. & Smith, J.L. Crystallization and preliminary characterization of mitogillin, a ribosomal ribonuclease from Aspergillus restrictus. J Mol Biol 218, 489-92 (1991).
8.Baliga, N.S. et al. Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea. Genome. Res. 14, 2221-34 (2004).
9.Ng, W.V. et al. Genome sequence of Halobacterium species NRC-1. Proc. Natl. Acad. Sci. U S A 97, 12176-81 (2000).
10.Pyatibratov, M.G. et al. Alternative flagellar filament types in the haloarchaeon Haloarcula marismortui. Can. J. Microbiol. 54, 835-44 (2008).
11.Berg, H.C. The rotary motor of bacterial flagella. Annu Rev Biochem 72, 19-54 (2003).
12.Mauriello, E.M., Mignot, T., Yang, Z. & Zusman, D.R. Gliding motility revisited: how do the myxobacteria move without flagella? Microbiol Mol Biol Rev 74, 229-49.
13.Sundberg, S.A., Alam, M. & Spudich, J.L. Excitation signal processing times in Halobacterium halobium phototaxis. Biophys. J. 50, 895-900 (1986).
14.Amsler, C.D. Use of computer-assisted motion analysis for quantitative measurements of swimming behavior in peritrichously flagellated bacteria. Anal. Biochem. 235, 20-5 (1996).
15.Mitchell, J.G. & Kogure, K. Bacterial motility: links to the environment and a driving force for microbial physics. FEMS Microbiol. Ecol. 55, 3-16 (2006).
16.Wadhams, G.H. & Armitage, J.P. Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5, 1024-37 (2004).
17.Spudich, J.L., Yang, C.S., Jung, K.H. & Spudich, E.N. Retinylidene proteins: structures and functions from archaea to humans. Annu Rev Cell Dev Biol 16, 365-92 (2000).
18.Briggs, W.R. & Spudich, J.L. Handbook of photosensory receptors (Wiley-VCH, Weinheim, 2005).
19.Oesterhelt, D. & Stoeckenius, W. Functions of a new photoreceptor membrane. Proc. Natl. Acad. Sci. U S A 70, 2853-7 (1973).
20.Lanyi, J.K. & Luecke, H. Bacteriorhodopsin. Curr. Opin. Struct. Biol. 11, 415-9 (2001).
21.Jin, Y. et al. Bacteriorhodopsin as an electronic conduction medium for biomolecular electronics. Chem Soc Rev 37, 2422-32 (2008).
22.Varo, G. Analogies between halorhodopsin and bacteriorhodopsin. Biochim Biophys Acta 1460, 220-9 (2000).
23.傅煦媛. 表現 Haloarcula marismortui 之六個光感受體揭露其獨特的感光特性. 國立台灣大學微生物與生化學研究所碩士論文 (2008).24.劉康正. Haloarcula marismortui中HmBRI及HmBRII蛋白質特性及功能研究. 國立台灣大學微生物與生化學研究所碩士論文 (2009).
25.Hulko, M. et al. The HAMP domain structure implies helix rotation in transmembrane signaling. Cell 126, 929-40 (2006).
26.Robb, F.T. Archaea : a laboratory manual (Cold Spring Harbor Laboratory Press, Plainview, N.Y., 1995).
27.Sager, B.M., Sekelsky, J.J., Matsumura, P. & Adler, J. Use of a computer to assay motility in bacteria. Anal. Biochem. 173, 271-7 (1988).
28.Hader, D.-P. Image analysis in biology (CRC Press, Boca Raton, Fla., 1992).
29.Khan, S., Amoyaw, K., Spudich, J.L., Reid, G.P. & Trentham, D.R. Bacterial chemoreceptor signaling probed by flash photorelease of a caged serine. Biophys. J. 62, 67-8 (1992).
30.Khan, S. et al. Excitatory signaling in bacterial probed by caged chemoeffectors. Biophys. J. 65, 2368-82 (1993).
31.Alon, U. et al. Response regulator output in bacterial chemotaxis. EMBO J. 17, 4238-48 (1998).
32.Streif, S., Staudinger, W.F., Oesterhelt, D. & Marwan, W. Quantitative analysis of signal transduction in motile and phototactic cells by computerized light stimulation and model based tracking. Rev. Sci. Instrum. 80, 023709 (2009).
33.Sbalzarini, I.F. & Koumoutsakos, P. Feature point tracking and trajectory analysis for video imaging in cell biology. J. Struct. Biol. 151, 182-95 (2005).
34.http://faculty.washington.edu/gmilne/tracker.htm The Particle Tracking Resource Page @ The University of Washington (2010).
35.Mittal, N., Budrene, E.O., Brenner, M.P. & Van Oudenaarden, A. Motility of Escherichia coli cells in clusters formed by chemotactic aggregation. Proc. Natl. Acad. Sci. U S A 100, 13259-63 (2003).
36.Polin, M., Tuval, I., Drescher, K., Gollub, J.P. & Goldstein, R.E. Chlamydomonas swims with two "gears" in a eukaryotic version of run-and-tumble locomotion. Science 325, 487-90 (2009).
37.Berg, H.C. Random walks in biology (Princeton University Press, Princeton, N.J., 1993).
38.Allen, L.J.S. An introduction to stochastic processes with applications to biology (Pearson/Prentice Hall, Upper Saddle River, N.J., 2003).
39.http://en.wikipedia.org/wiki/Rice_distribution Rice distribution - Wikipedia, the free encyclopedia (2010).
40.Rice, S.O. Mathematical Analysis of Random Noise. Bell Syst. Tech. J. 23, 282-332 (1944).
41.Karlsen, O.T., Verhagen, R. & Bovee, W.M. Parameter estimation from Rician-distributed data sets using a maximum likelihood estimator: application to T1 and perfusion measurements. Magn. Reson. Med. 41, 614-23 (1999).
42.Sasaki, J. et al. Different dark conformations function in color-sensitive photosignaling by the sensory rhodopsin I-HtrI complex. Biophys J 92, 4045-53 (2007).
43.Spudich, J.L. The multitalented microbial sensory rhodopsins. Trends Microbiol. 14, 480-7 (2006).
44.Lin, Y.C., Fu, H.Y. & Yang, C.S. Phototaxis of Haloarcula marismortui Revealed Through a Novel Microbial Motion Analysis Algorithm. Photochem Photobiol (2010).
45.Barabasi, A.L. Scale-free networks: a decade and beyond. Science 325, 412-3 (2009).