(3.238.186.43) 您好!臺灣時間:2021/03/01 09:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾雅伶
研究生(外文):Ya-Ling Tseng
論文名稱:單胞綠藻SUMO E3黏合酶Siz1之基因選殖與蛋白質表現
論文名稱(外文):Molecular cloning and protein expression of Siz1 SUMO E3 ligase in Chlamydomonas reinhardtii
指導教授:張世宗張世宗引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物與生化學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:77
中文關鍵詞:SUMO E3黏合&SUMO E3黏合&SUMO E3黏合&SUMO E3黏合&
外文關鍵詞:SUMO E3 ligasemolecular coloningheatshock
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
SUMO E3黏合酶參與SUMO化 (sumoylation) 反應的最後一個步驟。而SUMO E3黏合酶,除了能夠加速SUMO化反應的進行及增加SUMO對於目標蛋白質的專一性外,亦可調控細胞內許多不同的生理功能。細胞中有非常多能被SUMO修飾的受質,但目前已知且較常被探討的SUMO E3黏合酶只有三種,因此相關的研究仍有很大的發展空間,尤其對單胞綠藻 (Chlamydomonas reinhardtii) 之SUMO E3黏合酶的研究的研究仍未見。
本論文先利用阿拉伯芥的SUMO E3黏合酶AtSiz1的胺基酸序列,以BLAST方法找出單胞綠藻中與其相似的序列,並找到了一個功能未知的蛋白質序列。此序列與AtSiz1擁有相似的保守性區域,如N端之SAP (scaffold attachment factor A/B/Acinus/PIAS) domain,分子中間的PHD (plant homeodomain) domain及RING (really interesting new gene) domain,因此推測這個預測的蛋白質可能為一種SUMO E3黏合酶,本論文將其暫時命名為CrSiz1。目前已成功選殖到此段序列,及表現各個保守性區域之重組蛋白質,值得一提的是CrSiz1之C端含有一段特有之胺基酸序列,並未見於其他Siz1之序列中。有研究指出阿拉伯芥於熱休克處理後,AtSiz1可以增加受質的SUMO化以抵抗逆境。然而利用CrSiz1之專一性抗體觀察單胞綠藻於熱休克處理後之CrSiz1表現情形,並未偵測出其差異性,因此目前尚無法確定CrSiz1是否具有SUMO E3黏合酶之生化性質與功能。


The SUMO E3 ligase involves in the last step of sumoylation. In addition to faciliate sumoylation and increase specificity for the targets, SUMO E3 ligases modulate a wide range of physiological functions. There are many sumoylated proteins in the cells, but only three kinds of SUMO E3 ligases have been shown in the literatures. Notably, the study of SUMO E3 ligase in Chlamydomonas reinhardtii has not been reported.
In this study, using the Arabidopsis SUMO E3 ligase, AtSiz1, as the template for BLAST search, a gene encoding for a predicated protein with unkown function has been remarked. This predicated protein has similar conserved domains with AtSiz1, such as N-terminal SAP (scaffold attachment factor A/B/Acinus/PIAS) domain, PHD (plant homeodoamin) and RING (really interesting new gene) domain in the middle of the sequence. Based on the sequence observation, this predicated protein was herein named CrSiz1. The partial sequences of CrSiz1 have been expressed and purified from the Escherichia coli. It is noted that CrSiz1 cotains a unique C-terminal sequence which has not been found in other Siz1 proteins. It has been reported that AtSiz1 can inscrease sumoylated proteins under the heat shock condition. By using the antibodies specific to CrSiz1 for western blotting against the C. reinhardtii samples obtained from the cells cultured at 42

中文摘要 i
Abstract ii
縮寫表 iii
第一章 緒論 1
1.1 SUMO (small ubiquitin-like modifier) 1
1.2 SUMO化反應機制 2
1.2.1 SUMO化路徑 2
1.2.2 參與SUMO化反應之酵素 2
1.3 SUMO E3黏合酶 4
1.3.1 SIZ/PIAS 家族 5
1.3.2 NSE2/MMS21 8
1.3.3 RanBP2/Nup358 9
1.3.4 Pc2 10
1.4 SUMO化修飾之生理功能 10
1.5 逆境壓力下SUMO化修飾及SUMO E3黏合酶之調控 12
1.6 研究動機與方向 13
第二章 材料與方法 15
2.1 實驗材料 15
2.1.1 大腸桿菌菌株 15
2.1.2 單胞綠藻 15
2.2 目標基因表現載體之建構 15
2.2.1 原核表現系統載體 15
2.2.2 聚合酶鏈反應 16
2.2.3 重疊聚合酶鏈鎖反應 16
2.2.4 限制酶切反應 17
2.2.6 接合反應 17
2.3 原核宿主表現系統 17
2.3.1 化學法勝任細胞製備 17
2.3.2 大腸桿菌細胞轉形 17
2.3.3 重組蛋白質誘導表現 18
2.4 重組蛋白質之純化方法 19
2.4.1 GST-tag 重組蛋白質親和性層析法 19
2.4.2 蛋白質脫鹽與濃縮 19
2.5 核酸基本操作方法 20
2.5.1 單胞綠藻總RNA抽取 20
2.5.2 反轉錄酶-聚合連鎖反應 20
2.5.3 小量質體DNA製備 21
2.5.4 洋菜膠體電泳 21
2.5.5 核酸定量 22
2.5.6 核酸純化套組 22
2.6 蛋白質相關基本操作方法 23
2.6.1 蛋白質純化 23
2.6.2 蛋白質定量 24
2.6.3 蛋白質電泳檢定 25
2.6.4 蛋白質膠體電泳染色法 25
2.6.5 蛋白質轉印法 26
2.6.6 免疫染色法 26
第三章 結果 27
3.1 單胞綠藻之SUMO E3黏合酶CrSiz1基因選殖 27
3.1.1 CrSiz1-SAP domain基因選殖與表現質體建構 28
3.1.2 CrSiz1-SAP domain重組蛋白質表現與純化 28
3.1.3 CrSiz1-PHD domain基因選殖與表現質體建構 29
中文摘要 i
Abstract ii
縮寫表 iii
第一章 緒論 1
1.1 SUMO (small ubiquitin-like modifier) 1
1.2 SUMO化反應機制 2
1.2.1 SUMO化路徑 2
1.2.2參與SUMO化反應之酵素 2
1.3 SUMO E3黏合酶 4
1.3.1 SIZ/PIAS 家族 5
1.3.2 NSE2/MMS21 8
1.3.3 RanBP2/Nup358 9
1.3.4 Pc2 10
1.4 SUMO化修飾之生理功能 10
1.5 逆境壓力下SUMO化修飾及SUMO E3黏合酶之調控 12
1.6 研究動機與方向 13
第二章 材料與方法 15
2.1 實驗材料 15
2.1.1 大腸桿菌菌株 15
2.1.2 單胞綠藻 15
2.2 目標基因表現載體之建構 15
2.2.1 原核表現系統載體 15
2.2.2聚合酶鏈反應 16
2.2.3 重疊聚合酶鏈鎖反應 16
2.2.4限制酶切反應 17
2.2.6 接合反應 17
2.3 原核宿主表現系統 17
2.3.1 化學法勝任細胞製備 17
2.3.2 大腸桿菌細胞轉形 17
2.3.3 重組蛋白質誘導表現 18
2.4 重組蛋白質之純化方法 19
2.4.1 GST-tag 重組蛋白質親和性層析法 19
2.4.2 蛋白質脫鹽與濃縮 19
2.5 核酸基本操作方法 20
2.5.1 單胞綠藻總RNA抽取 20
2.5.2 反轉錄酶-聚合連鎖反應 20
2.5.3 小量質體DNA製備 21
2.5.4 洋菜膠體電泳 21
2.5.5 核酸定量 22
2.5.6 核酸純化套組 22
2.6 蛋白質相關基本操作方法 23
2.6.1蛋白質純化 23
2.6.2 蛋白質定量 24
2.6.3 蛋白質電泳檢定 25
2.6.4 蛋白質膠體電泳染色法 25
2.6.5 蛋白質轉印法 26
2.6.6 免疫染色法 26
第三章 結果 27
3.1 單胞綠藻之SUMO E3黏合酶CrSiz1基因選殖 27
3.1.1 CrSiz1-SAP domain基因選殖與表現質體建構 28
3.1.2 CrSiz1-SAP domain重組蛋白質表現與純化 28
3.1.3 CrSiz1-PHD domain基因選殖與表現質體建構 29
3.1.4 CrSiz1-PHD domain重組蛋白質表現與純化 29
3.1.5 CrSiz1-RING domain基因選質與表現質體建構 29
3.1.6 CrSiz1-RING domain重組蛋白質表現與純化 30
3.1.7 CrSiz1 C端序列基因選殖與表現質體建構 31
3.1.8 CrSiz1 C端序列重組蛋白質表現與純化 31
3.2 SAP、PHD及C-ter多株抗體效價及專一性測試 31
3.2.1 anti-SAP多株抗體效價及專一性測試 32
3.2.2 anti-PHD多株抗體效價及專一性測試 32
3.2.3 anti-C-ter多株抗體效價及專一性測試 33
3.3利用多株抗體偵測單胞綠藻細胞中CrSiz1 34
3.4 熱逆境處理對於單胞綠藻中CrSiz1之分析 34
第四章 討論 35
4.1 單胞綠藻中確實存在CrSiz1基因序列 35
4.2 CrSiz1各保守性區域之重組蛋白質表現及純化 36
4.3 CrSiz1各保守性區域多株抗體之測試 37
4.4 多株抗體尚未找出可能為CrSiz1之蛋白質 38
參考文獻 40
圖與表 45
附錄 64
論文口試問答摘要 74


Agarwal, R. K. and A. Perl (1993). "PCR amplification of highly GC-rich DNA template after denaturation by NaOH." Nucleic Acids Res 21(22): 5283-5284.
Andrews, E. A., J. Palecek, et al. (2005). "Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage." Mol Cell Biol 25(1): 185-196.
Aravind, L. and E. V. Koonin (2000). "SAP - a putative DNA-binding motif involved in chromosomal organization." Trends Biochem Sci 25(3): 112-114.
Bernier-Villamor, V., D. A. Sampson, et al. (2002). "Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1." Cell 108(3): 345-356.
Bienz, M. (2006). "The PHD finger, a nuclear protein-interaction domain." Trends Biochem Sci 31(1): 35-40.
Bohren, K. M., V. Nadkarni, et al. (2004). "A M55V polymorphism in a novel SUMO gene (SUMO-4) differentially activates heat shock transcription factors and is associated with susceptibility to type I diabetes mellitus." J Biol Chem 279(26): 27233-27238.
Bossis, G. and F. Melchior (2006). "Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes." Mol Cell 21(3): 349-357.
Bossis, G. and F. Melchior (2006). "SUMO: regulating the regulator." Cell Div 1: 13.
Bradford, M. M. (1976). "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding." Anal Biochem 72: 248-254.
Byrd, C., G. C. Turner, et al. (1998). "The N-end rule pathway controls the import of peptides through degradation of a transcriptional repressor." EMBO J 17(1): 269-277.
Carbia-Nagashima, A., J. Gerez, et al. (2007). "RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia." Cell 131(2): 309-323.
Cheong, M. S., H. C. Park, et al. (2009). "Specific domain structures control abscisic acid-, salicylic acid-, and stress-mediated SIZ1 phenotypes." Plant Physiol 151(4): 1930-1942.
Desterro, J. M., M. S. Rodriguez, et al. (1998). "SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation." Mol Cell 2(2): 233-239.
Desterro, J. M., M. S. Rodriguez, et al. (1999). "Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1." J Biol Chem 274(15): 10618-10624.
Dohmen, R. J. (2004). "SUMO protein modification." Biochim Biophys Acta 1695(1-3): 113-131.
Dul, B. E. and N. C. Walworth (2007). "The plant homeodomain fingers of fission yeast Msc1 exhibit E3 ubiquitin ligase activity." J Biol Chem 282(25): 18397-18406.
Duval, D., G. Duval, et al. (2003). "The ''PINIT'' motif, of a newly identified conserved domain of the PIAS protein family, is essential for nuclear retention of PIAS3L." FEBS Lett 554(1-2): 111-118.
Garcia-Dominguez, M., R. March-Diaz, et al. (2008). "The PHD domain of plant PIAS proteins mediates sumoylation of bromodomain GTE proteins." J Biol Chem 283(31): 21469-21477.
Geiss-Friedlander, R. and F. Melchior (2007). "Concepts in sumoylation: a decade on." Nat Rev Mol Cell Biol 8(12): 947-956.
Girdwood, D., D. Bumpass, et al. (2003). "P300 transcriptional repression is mediated by SUMO modification." Mol Cell 11(4): 1043-1054.
Gozani, O., P. Karuman, et al. (2003). "The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor." Cell 114(1): 99-111.
Gross, M., R. Yang, et al. (2004). "PIASy-mediated repression of the androgen receptor is independent of sumoylation." Oncogene 23(17): 3059-3066.
Hardeland, U., R. Steinacher, et al. (2002). "Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover." EMBO J 21(6): 1456-1464.
Hay, R. T. (2001). "Protein modification by SUMO." Trends Biochem Sci 26(5): 332-333.
Hay, R. T. (2005). "SUMO: a history of modification." Mol Cell 18(1): 1-12.
Hershko, A. and A. Ciechanover (1998). "The ubiquitin system." Annu Rev Biochem 67: 425-479.
Hietakangas, V., J. Anckar, et al. (2006). "PDSM, a motif for phosphorylation-dependent SUMO modification." Proc Natl Acad Sci U S A 103(1): 45-50.
Hochstrasser, M. (2001). "SP-RING for SUMO: new functions bloom for a ubiquitin-like protein." Cell 107(1): 5-8.
Jackson, P. K. (2001). "A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases." Genes Dev 15(23): 3053-3058.
Johnson, E. S. (2004). "Protein modification by SUMO." Annu Rev Biochem 73: 355-382.
Johnson, E. S. and A. A. Gupta (2001). "An E3-like factor that promotes SUMO conjugation to the yeast septins." Cell 106(6): 735-744.
Johnson, E. S., I. Schwienhorst, et al. (1997). "The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer." EMBO J 16(18): 5509-5519.
Kagey, M. H., T. A. Melhuish, et al. (2005). "Multiple activities contribute to Pc2 E3 function." EMBO J 24(1): 108-119.
Kagey, M. H., T. A. Melhuish, et al. (2003). "The polycomb protein Pc2 is a SUMO E3." Cell 113(1): 127-137.
Kahyo, T., T. Nishida, et al. (2001). "Involvement of PIAS1 in the sumoylation of tumor suppressor p53." Mol Cell 8(3): 713-718.
Kerscher, O. (2007). "SUMO junction-what''s your function? New insights through SUMO-interacting motifs." EMBO Rep 8(6): 550-555.
Kim, J., C. A. Cantwell, et al. (2002). "Transcriptional activity of CCAAT/enhancer-binding proteins is controlled by a conserved inhibitory domain that is a target for sumoylation." J Biol Chem 277(41): 38037-38044.
Kim, K. I., S. H. Baek, et al. (2002). "Versatile protein tag, SUMO: its enzymology and biological function." J Cell Physiol 191(3): 257-268.
Kipp, M., F. Gohring, et al. (2000). "SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA." Mol Cell Biol 20(20): 7480-7489.
Kirsh, O., J. S. Seeler, et al. (2002). "The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase." EMBO J 21(11): 2682-2691.
Knipscheer, P., W. J. van Dijk, et al. (2007). "Noncovalent interaction between Ubc9 and SUMO promotes SUMO chain formation." EMBO J 26(11): 2797-2807.
Kotaja, N., U. Karvonen, et al. (2002). "PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases." Mol Cell Biol 22(14): 5222-5234.
Kurepa, J., J. M. Walker, et al. (2003). "The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress." J Biol Chem 278(9): 6862-6872.
Li, S. J. and M. Hochstrasser (1999). "A new protease required for cell-cycle progression in yeast." Nature 398(6724): 246-251.
Liu, B., M. Gross, et al. (2001). "A transcriptional corepressor of Stat1 with an essential LXXLL signature motif." Proc Natl Acad Sci U S A 98(6): 3203-3207.
Mahajan, R., C. Delphin, et al. (1997). "A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2." Cell 88(1): 97-107.
Matic, I., M. van Hagen, et al. (2008). "In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy." Mol Cell Proteomics 7(1): 132-144.
Matunis, M. J., J. Wu, et al. (1998). "SUMO-1 modification and its role in targeting the Ran GTPase-activating protein, RanGAP1, to the nuclear pore complex." J Cell Biol 140(3): 499-509.
Meluh, P. B. and D. Koshland (1995). "Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C." Mol Biol Cell 6(7): 793-807.
Minty, A., X. Dumont, et al. (2000). "Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif." J Biol Chem 275(46): 36316-36323.
Miura, K., J. B. Jin, et al. (2007). "Sumoylation, a post-translational regulatory process in plants." Curr Opin Plant Biol 10(5): 495-502.
Moilanen, A. M., U. Karvonen, et al. (1999). "A testis-specific androgen receptor coregulator that belongs to a novel family of nuclear proteins." J Biol Chem 274(6): 3700-3704.
Mukhopadhyay, D. and M. Dasso (2007). "Modification in reverse: the SUMO proteases." Trends Biochem Sci 32(6): 286-295.
Okuma, T., R. Honda, et al. (1999). "In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2." Biochem Biophys Res Commun 254(3): 693-698.
Palvimo, J. J. (2007). "PIAS proteins as regulators of small ubiquitin-related modifier (SUMO) modifications and transcription." Biochem Soc Trans 35(Pt 6): 1405-1408.
Pichler, A., A. Gast, et al. (2002). "The nucleoporin RanBP2 has SUMO1 E3 ligase activity." Cell 108(1): 109-120.
Pichler, A., P. Knipscheer, et al. (2004). "The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type." Nat Struct Mol Biol 11(10): 984-991.
Potts, P. R. and H. Yu (2005). "Human MMS21/NSE2 is a SUMO ligase required for DNA repair." Mol Cell Biol 25(16): 7021-7032.
Potts, P. R. and H. Yu (2007). "The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins." Nat Struct Mol Biol 14(7): 581-590.
Qu, J., G. H. Liu, et al. (2007). "Nitric oxide destabilizes Pias3 and regulates sumoylation." PLoS One 2(10): e1085.
Reindle, A., I. Belichenko, et al. (2006). "Multiple domains in Siz SUMO ligases contribute to substrate selectivity." J Cell Sci 119(Pt 22): 4749-4757.
Reverter, D. and C. D. Lima (2005). "Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex." Nature 435(7042): 687-692.
Sachdev, S., L. Bruhn, et al. (2001). "PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies." Genes Dev 15(23): 3088-3103.
Saitoh, H. and J. Hinchey (2000). "Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3." J Biol Chem 275(9): 6252-6258.
Saitoh, H., M. D. Pizzi, et al. (2002). "Perturbation of SUMOlation enzyme Ubc9 by distinct domain within nucleoporin RanBP2/Nup358." J Biol Chem 277(7): 4755-4763.
Saitoh, H., R. Pu, et al. (1997). "RanBP2 associates with Ubc9p and a modified form of RanGAP1." Proc Natl Acad Sci U S A 94(8): 3736-3741.
Sampson, D. A., M. Wang, et al. (2001). "The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification." J Biol Chem 276(24): 21664-21669.
Schmidt, D. and S. Muller (2002). "Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity." Proc Natl Acad Sci U S A 99(5): 2872-2877.
Schwienhorst, I., E. S. Johnson, et al. (2000). "SUMO conjugation and deconjugation." Mol Gen Genet 263(5): 771-786.
Seeler, J. S. and A. Dejean (2003). "Nuclear and unclear functions of SUMO." Nat Rev Mol Cell Biol 4(9): 690-699.
Sharrocks, A. D. (2006). "PIAS proteins and transcriptional regulation--more than just SUMO E3 ligases?" Genes Dev 20(7): 754-758.
Shin, Y. C., B. Y. Liu, et al. (2010). "Biochemical characterization of the small ubiquitin-like modifiers of Chlamydomonas reinhardtii." Planta 232(3): 649-662.
Shuai, K. and B. Liu (2005). "Regulation of gene-activation pathways by PIAS proteins in the immune system." Nat Rev Immunol 5(8): 593-605.
Suzuki, R., H. Shindo, et al. (2009). "Solution structures and DNA binding properties of the N-terminal SAP domains of SUMO E3 ligases from Saccharomyces cerevisiae and Oryza sativa." Proteins-Structure Function and Bioinformatics 75(2): 336-347.
Takahashi, Y., T. Kahyo, et al. (2001). "Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates." J Biol Chem 276(52): 48973-48977.
Takahashi, Y. and Y. Kikuchi (2005). "Yeast PIAS-type Ull1/Siz1 is composed of SUMO ligase and regulatory domains." J Biol Chem 280(43): 35822-35828.
Takahashi, Y., A. Toh-e, et al. (2001). "A novel factor required for the SUMO1/Smt3 conjugation of yeast septins." Gene 275(2): 223-231.
Tan, J. A., S. H. Hall, et al. (2002). "Protein inhibitors of activated STAT resemble scaffold attachment factors and function as interacting nuclear receptor coregulators." J Biol Chem 277(19): 16993-17001.
Tang, Z., C. M. Hecker, et al. (2008). "Protein interactions in the sumoylation cascade: lessons from X-ray structures." FEBS J 275(12): 3003-3015.
Tatham, M. H., S. Kim, et al. (2005). "Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection." Nat Struct Mol Biol 12(1): 67-74.
Tempe, D., M. Piechaczyk, et al. (2008). "SUMO under stress." Biochem Soc Trans 36(Pt 5): 874-878.
Tong, H., G. Hateboer, et al. (1997). "Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system." J Biol Chem 272(34): 21381-21387.
Ungureanu, D., S. Vanhatupa, et al. (2003). "PIAS proteins promote SUMO-1 conjugation to STAT1." Blood 102(9): 3311-3313.
Verger, A., J. Perdomo, et al. (2003). "Modification with SUMO. A role in transcriptional regulation." EMBO Rep 4(2): 137-142.
Vertegaal, A. C. (2007). "Small ubiquitin-related modifiers in chains." Biochem Soc Trans 35(Pt 6): 1422-1423.
Wang, Y., I. Ladunga, et al. (2008). "The small ubiquitin-like modifier (SUMO) and SUMO-conjugating system of Chlamydomonas reinhardtii." Genetics 179(1): 177-192.
Weis, K. (2003). "Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle." Cell 112(4): 441-451.
Williamson, M. P. (1994). "The structure and function of proline-rich regions in proteins." Biochem J 297 ( Pt 2): 249-260.
Yoo, C. Y., K. Miura, et al. (2006). "SIZ1 small ubiquitin-like modifier E3 ligase facilitates basal thermotolerance in Arabidopsis independent of salicylic acid." Plant Physiol 142(4): 1548-1558.
Zhao, X. and G. Blobel (2005). "A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization." Proc Natl Acad Sci U S A 102(13): 4777-4782.
Zhou, W., J. J. Ryan, et al. (2004). "Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses." J Biol Chem 279(31): 32262-32268.
Zhu, S., J. Goeres, et al. (2009). "Protection from isopeptidase-mediated deconjugation regulates paralog-selective sumoylation of RanGAP1." Mol Cell 33(5): 570-580.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔