(3.235.108.188) 您好!臺灣時間:2021/02/28 00:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林巧潔
研究生(外文):Cheau-Jye Lin
論文名稱:探討CCL3及CCL4於EB病毒感染B細胞中之調控機制及生理功能
論文名稱(外文):Regulatory mechanism and functional study of CCL3 and CCL4 in EBV-infected B cells
指導教授:蔡錦華蔡錦華引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:微生物學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:113
中文關鍵詞:CCL3CCL4EB病毒LMP1
外文關鍵詞:CCL3CCL4Epstein-Barr virusLMP1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
EB病毒為一廣泛流行於人類間的疱疹病毒,目前已發現許多與EB病毒相關的疾病,包含鼻咽癌、何杰金氏淋巴瘤等。這些疾病都具有淋巴球浸潤以及病變細胞分泌多種細胞素的特徵,EB病毒似乎可藉由引發類似發炎反應的現象改變週遭微環境,進而幫助病毒感染細胞的存活。在以細胞素蛋白質微陣列分析後,發現許多細胞素在EB病毒感染B細胞後,表現量皆會上升,其中CCL3及CCL4兩個具有引發發炎反應及聚集白血球能力的細胞素,在病毒感染B細胞後表現量也有上升的現象。進一步以即時同步偵測定量聚合酶連鎖反應 (RT-Q-PCR)以及酶聯免疫吸附試驗 (ELISA)檢測,發現EB病毒感染B細胞3天時,CCL3及CCL4 mRNA表現量會達高峰,接著會有些微的下降,但仍會持續表現直至細胞被轉形為淋巴母細胞株 (LCL);蛋白質部份則可觀察到兩種細胞素在感染第3天表現量達到高峰後,會維持相同的表現量直到細胞被轉形,因此推測EB病毒感染B細胞後,可藉由某種機制誘發CCL3及CCL4表現。當轉染不同EB病毒基因至鼻咽癌及巴氏淋巴瘤細胞株後,發現LMP1具有誘發CCL3及CCL4表現的能力。利用短干擾RNA (shRNA)於淋巴母細胞中降解LMP1表現時,可發現CCL3及CCL4表現量隨著LMP1表現量的下降也有下降的情形,更進一步證實EB病毒的確是透過LMP1誘發並維持細胞中CCL3及CCL4的表現。將LMP1刪除突變體轉導至B細胞後,實驗結果顯示LMP1兩大功能性區域-CTAR1及CTAR2,皆參與在LMP1誘發CCL3及CCL4的機制中,且這樣的調控從基因轉錄階段即開始。進一步以報導基因分析法 (reporter assay)檢測,可發現LMP1具有活化CCL4啟動子活性的能力。但於電泳位移分析 (EMSA)實驗結果顯示,轉錄因子與CCL4啟動子的結合,並不受LMP1影響,LMP1可能是藉由磷酸化轉錄因子活化其功能,進而啟動CCL4基因表現。於生理功能分析實驗中,當利用抗體阻擋CCL4的功能後,以流氏細胞儀及西方點墨法分析,皆可觀察到淋巴母細胞出現細胞凋亡的現象,顯示CCL4作用於細胞上,可提供細胞存活之訊息,抑制細胞凋亡。
我們的實驗結果顯示,EB病毒感染B細胞後,會經由LMP1誘發CCL3及CCL4表現。透過活化CCL4啟動子活性誘發CCL4表現,分泌至細胞外的CCL4會以autocrine或paracrine的方式作用於細胞上,提供EB病毒感染B細胞存活的訊息,進而幫助EB病毒感染B細胞之存活。


Many Epstein-Barr virus (EBV)-associated malignancies, such as Hodgkin''s lymphoma, nasopharyngeal carcinoma (NPC), are characterized by intensive lymphocytes infiltration. EBV-induced chemokine secretion contributes to the recruitment of the lymphocytes. As analyzed by antibody array, we found that CCL3 and CCL4 secretion were induced in B cells after EBV infection. CCL3 and CCL4 harbored the ability to recruit leukocyte and induce inflammation. These factors may contribute to the lymphocyte infiltration of EBV-associated neoplasms, so we are interesting in investigating the role of CCL3 and CCL4 in EBV-associated diseases. When investigated by using RT-Q-PCR, transcripts of both chemokines reached the peak on day 3 post-infection, and then maintained lower expression levels until the cells transformed to lymphoblastoid cell lines (LCL). Both CCL3 and CCL4 proteins could be detected by ELISA, and stably expressed until day 28 post-infection. We revealed that EBV latent membrane protein-1 (LMP1) harbored the ability to induce CCL3 and CCL4 expression in NPC cell lines and B cells. Knockdown of LMP1 expression in LCLs, CCL3 and CCL4 levels decrease at the same time, suggesting that LMP1 can induce and maintain CCL3 and CCL4 expression in EBV-infected B cells. Deletion of LMP1 major functional domains, CTAR1 and CTAR2, abolished LMP1-mediated induction of CCL3 and CCL4, suggesting that both CTAR domains are important for inducing CCL3 and CCL4 expression. As analyzed by reporter assay, it shows that LMP1 can turn on CCL4 promoter activity. However, in the study of EMSA, it seems that LMP1 dosen’t influence on the binding of transcription factors on CCL4 promoter. We suggest that LMP1 may activate CCL4 promoter through influence on the activity of transcription factors. We also found that CCL4 is important for LCL survival. When using CCL4 neutralization antibody, it will induced LCL apoptosis.
In our study, we revealed that EB virus induces CCL3 and CCL4 expression through LMP1. CCL4 harbor the ability to provided B cell survival signal and may contribute to the pathogenesis of EBV-associated lymphoproliferative disease .


口試委員審定書……………………………………………………Ⅰ
致謝……………………………………………………………………Ⅱ
中文摘要………………………………………………………………Ⅲ
英文摘要………………………………………………………………Ⅴ
序論…………………………………………………………………….. 1
實驗材料……………………………………………………………….18
實驗方法……..…………………………………………………………31
實驗結果……………………………………………………………….49
討論……………………………………………………………………..58
圖表……………………………………………………………………..67
附錄……………………………………………………………………..86
參考文獻………………………………………………………………100


Adamson, A. L., and Kenney, S. (1999). The Epstein-Barr virus BZLF1 protein interacts physically and functionally with the histone acetylase CREB-binding protein. J Virol 73, 6551-6558.
Aggarwal, B. B., Shishodia, S., Sandur, S. K., Pandey, M. K., and Sethi, G. (2006). Inflammation and cancer: how hot is the link? Biochem Pharmacol 72, 1605-1621.
Ai, M. D., Li, L. L., Zhao, X. R., Wu, Y., Gong, J. P., and Cao, Y. (2005). Regulation of survivin and CDK4 by Epstein-Barr virus encoded latent membrane protein 1 in nasopharyngeal carcinoma cell lines. Cell Res 15, 777-784.
Anderson, P. (2008). Post-transcriptional control of cytokine production. Nat Immunol 9, 353-359.
Atwater, J. A., Wisdom, R., and Verma, I. M. (1990). Regulated mRNA stability. Annu Rev Genet 24, 519-541.
Babcock, G. J., Decker, L. L., Volk, M., and Thorley-Lawson, D. A. (1998). EBV persistence in memory B cells in vivo. Immunity 9, 395-404.
Baer, R., Bankier, A. T., Biggin, M. D., Deininger, P. L., Farrell, P. J., Gibson, T. J., Hatfull, G., Hudson, G. S., Satchwell, S. C., Seguin, C., and et al. (1984). DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-211.
Balkwill, F., and Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet 357, 539-545.
Barabitskaja, O., Foulke, J. S., Jr., Pati, S., Bodor, J., and Reitz, M. S., Jr. (2006). Suppression of MIP-1beta transcription in human T cells is regulated by inducible cAMP early repressor (ICER). J Leukoc Biol 79, 378-387.
Bogunia-Kubik, K., Jaskula, E., and Lange, A. (2007). The presence of functional CCR5 and EBV reactivation after allogeneic haematopoietic stem cell transplantation. Bone Marrow Transplant 40, 145-150.
Bristow, C. A., and Shore, P. (2003). Transcriptional regulation of the human MIP-1alpha promoter by RUNX1 and MOZ. Nucleic Acids Res 31, 2735-2744.
Broxmeyer, H. E., Sherry, B., Lu, L., Cooper, S., Oh, K. O., Tekamp-Olson, P., Kwon, B. S., and Cerami, A. (1990). Enhancing and suppressing effects of recombinant murine macrophage inflammatory proteins on colony formation in vitro by bone marrow myeloid progenitor cells. Blood 76, 1110-1116.
Buettner, M., Meyer, B., Schreck, S., and Niedobitek, G. (2007). Expression of RANTES and MCP-1 in epithelial cells is regulated via LMP1 and CD40. Int J Cancer 121, 2703-2710.
Burger, J. A., Quiroga, M. P., Hartmann, E., Burkle, A., Wierda, W. G., Keating, M. J., and Rosenwald, A. (2009). High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood 113, 3050-3058.
Burkitt, D., and Wright, D. (1966). Geographical and tribal distribution of the African lymphoma in Uganda. Br Med J 1, 569-573.
Bystry, R. S., Aluvihare, V., Welch, K. A., Kallikourdis, M., and Betz, A. G. (2001). B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2, 1126-1132.
Cahir-McFarland, E. D., Carter, K., Rosenwald, A., Giltnane, J. M., Henrickson, S. E., Staudt, L. M., and Kieff, E. (2004). Role of NF-kappa B in cell survival and transcription of latent membrane protein 1-expressing or Epstein-Barr virus latency III-infected cells. J Virol 78, 4108-4119.
Calender, A., Billaud, M., Aubry, J. P., Banchereau, J., Vuillaume, M., and Lenoir, G. M. (1987). Epstein-Barr virus (EBV) induces expression of B-cell activation markers on in vitro infection of EBV-negative B-lymphoma cells. Proc Natl Acad Sci U S A 84, 8060-8064.
Caput, D., Beutler, B., Hartog, K., Thayer, R., Brown-Shimer, S., and Cerami, A. (1986). Identification of a common nucleotide sequence in the 3''-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci U S A 83, 1670-1674.
Chang, Y., Lee, H. H., Chang, S. S., Hsu, T. Y., Wang, P. W., Chang, Y. S., Takada, K., and Tsai, C. H. (2004). Induction of Epstein-Barr virus latent membrane protein 1 by a lytic transactivator Rta. J Virol 78, 13028-13036.
Chen, C. Y., and Shyu, A. B. (1995). AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20, 465-470.
Chen, M. R., Huang, H., Fen, C. Y., and Chen, J. Y. (2000). A novel EBNA-1 tag system for high level expression and efficient detection of fusion proteins in vitro and in vivo. J Virol Methods 85, 35-41.
Chen, M. R., Tsai, C. H., Wu, F. F., Kan, S. H., Yang, C. S., and Chen, J. Y. (1999). The major immunogenic epitopes of Epstein-Barr virus (EBV) nuclear antigen 1 are encoded by sequence domains which vary among nasopharyngeal carcinoma biopsies and EBV-associated cell lines. J Gen Virol 80 ( Pt 2), 447-455.
Clerk, A., and Sugden, P. H. (1997). Cell stress-induced phosphorylation of ATF2 and c-Jun transcription factors in rat ventricular myocytes. Biochem J 325 ( Pt 3), 801-810.
Combadiere, C., Ahuja, S. K., Tiffany, H. L., and Murphy, P. M. (1996). Cloning and functional expression of CC CKR5, a human monocyte CC chemokine receptor selective for MIP-1(alpha), MIP-1(beta), and RANTES. J Leukoc Biol 60, 147-152.
Coussens, L. M., and Werb, Z. (2002). Inflammation and cancer. Nature 420, 860-867.
D''Addario, M., Ahmad, A., Morgan, A., and Menezes, J. (2000). Binding of the Epstein-Barr virus major envelope glycoprotein gp350 results in the upregulation of the TNF-alpha gene expression in monocytic cells via NF-kappaB involving PKC, PI3-K and tyrosine kinases. J Mol Biol 298, 765-778.
D''Addario, M., Ahmad, A., Xu, J. W., and Menezes, J. (1999). Epstein-Barr virus envelope glycoprotein gp350 induces NF-kappaB activation and IL-1beta synthesis in human monocytes-macrophages involving PKC and PI3-K. FASEB J 13, 2203-2213.
Dawson, C. W., Tramountanis, G., Eliopoulos, A. G., and Young, L. S. (2003). Epstein-Barr virus latent membrane protein 1 (LMP1) activates the phosphatidylinositol 3-kinase/Akt pathway to promote cell survival and induce actin filament remodeling. J Biol Chem 278, 3694-3704.
Diehl, V., Kirchner, H. H., Schaadt, M., Fonatsch, C., Stein, H., Gerdes, J., and Boie, C. (1981). Hodgkin''s disease: establishment and characterization of four in vitro cell lies. J Cancer Res Clin Oncol 101, 111-124.
DiPietro, L. A., Burdick, M., Low, Q. E., Kunkel, S. L., and Strieter, R. M. (1998). MIP-1alpha as a critical macrophage chemoattractant in murine wound repair. J Clin Invest 101, 1693-1698.
Dolyniuk, M., Wolff, E., and Kieff, E. (1976). Proteins of Epstein-Barr Virus. II. Electrophoretic analysis of the polypeptides of the nucleocapsid and the glucosamine- and polysaccharide-containing components of enveloped virus. J Virol 18, 289-297.
Eliopoulos, A. G., Gallagher, N. J., Blake, S. M., Dawson, C. W., and Young, L. S. (1999). Activation of the p38 mitogen-activated protein kinase pathway by Epstein-Barr virus-encoded latent membrane protein 1 coregulates interleukin-6 and interleukin-8 production. J Biol Chem 274, 16085-16096.
Eliopoulos, A. G., and Young, L. S. (2001). LMP1 structure and signal transduction. Semin Cancer Biol 11, 435-444.
Epstein, M. A., Achong, B. G., and Barr, Y. M. (1964). Virus Particles in Cultured Lymphoblasts from Burkitt''s Lymphoma. Lancet 1, 702-703.
Epstein, M. A., Henle, G., Achong, B. G., and Barr, Y. M. (1965). Morphological and Biological Studies on a Virus in Cultured Lymphoblasts from Burkitt''s Lymphoma. J Exp Med 121, 761-770.
Fahey, T. J., 3rd, Sherry, B., Tracey, K. J., van Deventer, S., Jones, W. G., 2nd, Minei, J. P., Morgello, S., Shires, G. T., and Cerami, A. (1990). Cytokine production in a model of wound healing: the appearance of MIP-1, MIP-2, cachectin/TNF and IL-1. Cytokine 2, 92-99.
Fahey, T. J., 3rd, Tracey, K. J., Tekamp-Olson, P., Cousens, L. S., Jones, W. G., Shires, G. T., Cerami, A., and Sherry, B. (1992). Macrophage inflammatory protein 1 modulates macrophage function. J Immunol 148, 2764-2769.
Fahraeus, R., Fu, H. L., Ernberg, I., Finke, J., Rowe, M., Klein, G., Falk, K., Nilsson, E., Yadav, M., Busson, P., and et al. (1988). Expression of Epstein-Barr virus-encoded proteins in nasopharyngeal carcinoma. Int J Cancer 42, 329-338.
Faqing, T., Zhi, H., Liqun, Y., Min, T., Huanhua, G., Xiyun, D., and Ya, C. (2005). Epstein-Barr virus LMP1 initiates cell proliferation and apoptosis inhibition via regulating expression of Survivin in nasopharyngeal carcinoma. Exp Oncol 27, 96-101.
Feederle, R., Kost, M., Baumann, M., Janz, A., Drouet, E., Hammerschmidt, W., and Delecluse, H. J. (2000). The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19, 3080-3089.
Franklin, C. C., McCulloch, A. V., and Kraft, A. S. (1995). In vitro association between the Jun protein family and the general transcription factors, TBP and TFIIB. Biochem J 305 ( Pt 3), 967-974.
Gires, O., Kohlhuber, F., Kilger, E., Baumann, M., Kieser, A., Kaiser, C., Zeidler, R., Scheffer, B., Ueffing, M., and Hammerschmidt, W. (1999). Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J 18, 3064-3073.
Gires, O., Zimber-Strobl, U., Gonnella, R., Ueffing, M., Marschall, G., Zeidler, R., Pich, D., and Hammerschmidt, W. (1997). Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J 16, 6131-6140.
Glaser, R., Zhang, H. Y., Yao, K. T., Zhu, H. C., Wang, F. X., Li, G. Y., Wen, D. S., and Li, Y. P. (1989). Two epithelial tumor cell lines (HNE-1 and HONE-1) latently infected with Epstein-Barr virus that were derived from nasopharyngeal carcinomas. Proc Natl Acad Sci U S A 86, 9524-9528.
Godfrey, A., Anderson, J., Papanastasiou, A., Takeuchi, Y., and Boshoff, C. (2005). Inhibiting primary effusion lymphoma by lentiviral vectors encoding short hairpin RNA. Blood 105, 2510-2518.
Gordon, J., Guy, G., and Walker, L. (1985). Autocrine models of B-lymphocyte growth. I. Role of cell contact and soluble factors in T-independent B-cell responses. Immunology 56, 329-335.
Gosselin, J., Flamand, L., D''Addario, M., Hiscott, J., and Menezes, J. (1992a). Infection of peripheral blood mononuclear cells by herpes simplex and Epstein-Barr viruses. Differential induction of interleukin 6 and tumor necrosis factor-alpha. J Clin Invest 89, 1849-1856.
Gosselin, J., Flamand, L., D''Addario, M., Hiscott, J., Stefanescu, I., Ablashi, D. V., Gallo, R. C., and Menezes, J. (1992b). Modulatory effects of Epstein-Barr, herpes simplex, and human herpes-6 viral infections and coinfections on cytokine synthesis. A comparative study. J Immunol 149, 181-187.
Graham, G. J., Wright, E. G., Hewick, R., Wolpe, S. D., Wilkie, N. M., Donaldson, D., Lorimore, S., and Pragnell, I. B. (1990). Identification and characterization of an inhibitor of haemopoietic stem cell proliferation. Nature 344, 442-444.
Grove, M., and Plumb, M. (1993). C/EBP, NF-kappa B, and c-Ets family members and transcriptional regulation of the cell-specific and inducible macrophage inflammatory protein 1 alpha immediate-early gene. Mol Cell Biol 13, 5276-5289.
Guan, E., Wang, J., Roderiquez, G., and Norcross, M. A. (2002). Natural truncation of the chemokine MIP-1 beta /CCL4 affects receptor specificity but not anti-HIV-1 activity. J Biol Chem 277, 32348-32352.
Hai, T., and Curran, T. (1991). Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci U S A 88, 3720-3724.
Henderson, S., Rowe, M., Gregory, C., Croom-Carter, D., Wang, F., Longnecker, R., Kieff, E., and Rickinson, A. (1991). Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 65, 1107-1115.
Henle, G., and Henle, W. (1966). Studies on cell lines derived from Burkitt''s lymphoma. Trans N Y Acad Sci 29, 71-79.
Hennessy, K., Fennewald, S., Hummel, M., Cole, T., and Kieff, E. (1984). A membrane protein encoded by Epstein-Barr virus in latent growth-transforming infection. Proc Natl Acad Sci U S A 81, 7207-7211.
Hoogewerf, A. J., Kuschert, G. S., Proudfoot, A. E., Borlat, F., Clark-Lewis, I., Power, C. A., and Wells, T. N. (1997). Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry 36, 13570-13578.
Hsieh, J. J., Zhou, S., Chen, L., Young, D. B., and Hayward, S. D. (1999). CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc Natl Acad Sci U S A 96, 23-28.
Hsu, M., Wu, S. Y., Chang, S. S., Su, I. J., Tsai, C. H., Lai, S. J., Shiau, A. L., Takada, K., and Chang, Y. (2008). Epstein-Barr virus lytic transactivator Zta enhances chemotactic activity through induction of interleukin-8 in nasopharyngeal carcinoma cells. J Virol 82, 3679-3688.
Hutt-Fletcher, L. M., Fowler, E., Lambris, J. D., Feighny, R. J., Simmons, J. G., and Ross, G. D. (1983). Studies of the Epstein Barr virus receptor found on Raji cells. II. A comparison of lymphocyte binding sites for Epstein Barr virus and C3d. J Immunol 130, 1309-1312.
Irving, S. G., Zipfel, P. F., Balke, J., McBride, O. W., Morton, C. C., Burd, P. R., Siebenlist, U., and Kelly, K. (1990). Two inflammatory mediator cytokine genes are closely linked and variably amplified on chromosome 17q. Nucleic Acids Res 18, 3261-3270.
Izumi, K. M., and Kieff, E. D. (1997). The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Acad Sci U S A 94, 12592-12597.
Jondal, M., Klein, G., Oldstone, M. B., Bokish, V., and Yefenof, E. (1976). Surface markers on human B and T lymphocytes. VIII. Association between complement and Epstein-Barr virus receptors on human lymphoid cells. Scand J Immunol 5, 401-410.
Joosten, S. A., van Meijgaarden, K. E., Savage, N. D., de Boer, T., Triebel, F., van der Wal, A., de Heer, E., Klein, M. R., Geluk, A., and Ottenhoff, T. H. (2007). Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc Natl Acad Sci U S A 104, 8029-8034.
Kao, H. Y., Ordentlich, P., Koyano-Nakagawa, N., Tang, Z., Downes, M., Kintner, C. R., Evans, R. M., and Kadesch, T. (1998). A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev 12, 2269-2277.
Karin, M. (1995). The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem 270, 16483-16486.
Kawasaki, H., Schiltz, L., Chiu, R., Itakura, K., Taira, K., Nakatani, Y., and Yokoyama, K. K. (2000). ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 405, 195-200.
Kieser, A., Kilger, E., Gires, O., Ueffing, M., Kolch, W., and Hammerschmidt, W. (1997). Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J 16, 6478-6485.
Kikuta, H., Taguchi, Y., Tomizawa, K., Kojima, K., Kawamura, N., Ishizaka, A., Sakiyama, Y., Matsumoto, S., Imai, S., Kinoshita, T., and et al. (1988). Epstein-Barr virus genome-positive T lymphocytes in a boy with chronic active EBV infection associated with Kawasaki-like disease. Nature 333, 455-457.
Kilger, E., Kieser, A., Baumann, M., and Hammerschmidt, W. (1998). Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J 17, 1700-1709.
Klein, E., Kis, L. L., and Klein, G. (2007). Epstein-Barr virus infection in humans: from harmless to life endangering virus-lymphocyte interactions. Oncogene 26, 1297-1305.
Konishi, T., Okabe, H., Katoh, H., Fujiyama, Y., and Mori, A. (1996). Macrophage inflammatory protein-1 alpha expression in non-neoplastic and neoplastic lung tissue. Virchows Arch 428, 107-111.
Laherty, C. D., Hu, H. M., Opipari, A. W., Wang, F., and Dixit, V. M. (1992). The Epstein-Barr virus LMP1 gene product induces A20 zinc finger protein expression by activating nuclear factor kappa B. J Biol Chem 267, 24157-24160.
Lambert, S. L., and Martinez, O. M. (2007). Latent membrane protein 1 of EBV activates phosphatidylinositol 3-kinase to induce production of IL-10. J Immunol 179, 8225-8234.
Lentzsch, S., Gries, M., Janz, M., Bargou, R., Dorken, B., and Mapara, M. Y. (2003). Macrophage inflammatory protein 1-alpha (MIP-1 alpha ) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood 101, 3568-3573.
Li, H. P., and Chang, Y. S. (2003). Epstein-Barr virus latent membrane protein 1: structure and functions. J Biomed Sci 10, 490-504.
Liebowitz, D., Kopan, R., Fuchs, E., Sample, J., and Kieff, E. (1987). An Epstein-Barr virus transforming protein associates with vimentin in lymphocytes. Mol Cell Biol 7, 2299-2308.
Lin, C. T., Chan, W. Y., Chen, W., Huang, H. M., Wu, H. C., Hsu, M. M., Chuang, S. M., and Wang, C. C. (1993). Characterization of seven newly established nasopharyngeal carcinoma cell lines. Lab Invest 68, 716-727.
Lin, W. W., and Karin, M. (2007). A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest 117, 1175-1183.
Lindahl, T., Adams, A., Bjursell, G., Bornkamm, G. W., Kaschka-Dierich, C., and Jehn, U. (1976). Covalently closed circular duplex DNA of Epstein-Barr virus in a human lymphoid cell line. J Mol Biol 102, 511-530.
Livingstone, C., Patel, G., and Jones, N. (1995). ATF-2 contains a phosphorylation-dependent transcriptional activation domain. EMBO J 14, 1785-1797.
Lu, H., Ouyang, W., and Huang, C. (2006). Inflammation, a key event in cancer development. Mol Cancer Res 4, 221-233.
Lu, J., Chen, S. Y., Chua, H. H., Liu, Y. S., Huang, Y. T., Chang, Y., Chen, J. Y., Sheen, T. S., and Tsai, C. H. (2000). Upregulation of tyrosine kinase TKT by the Epstein-Barr virus transactivator Zta. J Virol 74, 7391-7399.
Lusso, P. (2006). HIV and the chemokine system: 10 years later. EMBO J 25, 447-456.
McColl, S. R., Roberge, C. J., Larochelle, B., and Gosselin, J. (1997). EBV induces the production and release of IL-8 and macrophage inflammatory protein-1 alpha in human neutrophils. J Immunol 159, 6164-6168.
Medzhitov, R., and Horng, T. (2009). Transcriptional control of the inflammatory response. Nat Rev Immunol 9, 692-703.
Menten, P., Struyf, S., Schutyser, E., Wuyts, A., De Clercq, E., Schols, D., Proost, P., and Van Damme, J. (1999). The LD78beta isoform of MIP-1alpha is the most potent CCR5 agonist and HIV-1-inhibiting chemokine. J Clin Invest 104, R1-5.
Menten, P., Wuyts, A., and Van Damme, J. (2002). Macrophage inflammatory protein-1. Cytokine Growth Factor Rev 13, 455-481.
Mitchell, T., and Sugden, B. (1995). Stimulation of NF-kappa B-mediated transcription by mutant derivatives of the latent membrane protein of Epstein-Barr virus. J Virol 69, 2968-2976.
Mogensen, T. H., and Paludan, S. R. (2001). Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev 65, 131-150.
Mosialos, G., Birkenbach, M., Yalamanchili, R., VanArsdale, T., Ware, C., and Kieff, E. (1995). The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80, 389-399.
Nakayama, T., Hieshima, K., Nagakubo, D., Sato, E., Nakayama, M., Kawa, K., and Yoshie, O. (2004). Selective induction of Th2-attracting chemokines CCL17 and CCL22 in human B cells by latent membrane protein 1 of Epstein-Barr virus. J Virol 78, 1665-1674.
Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., Verma, I. M., and Trono, D. (1996). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263-267.
Nemerow, G. R., Mold, C., Schwend, V. K., Tollefson, V., and Cooper, N. R. (1987). Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. J Virol 61, 1416-1420.
Neote, K., DiGregorio, D., Mak, J. Y., Horuk, R., and Schall, T. J. (1993). Molecular cloning, functional expression, and signaling characteristics of a C-C chemokine receptor. Cell 72, 415-425.
New, D. C., and Wong, Y. H. (2003). CC chemokine receptor-coupled signalling pathways. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 35, 779-788.
Nilsson, K., and Klein, G. (1982). Phenotypic and cytogenetic characteristics of human B-lymphoid cell lines and their relevance for the etiology of Burkitt''s lymphoma. Adv Cancer Res 37, 319-380.
Oh, K. O., Zhou, Z., Kim, K. K., Samanta, H., Fraser, M., Kim, Y. J., Broxmeyer, H. E., and Kwon, B. S. (1991). Identification of cell surface receptors for murine macrophage inflammatory protein-1 alpha. J Immunol 147, 2978-2983.
Ozanne, B. W., Spence, H. J., McGarry, L. C., and Hennigan, R. F. (2007). Transcription factors control invasion: AP-1 the first among equals. Oncogene 26, 1-10.
Peng, M., and Lundgren, E. (1992). Transient expression of the Epstein-Barr virus LMP1 gene in human primary B cells induces cellular activation and DNA synthesis. Oncogene 7, 1775-1782.
Petosa, C., Morand, P., Baudin, F., Moulin, M., Artero, J. B., and Muller, C. W. (2006). Structural basis of lytic cycle activation by the Epstein-Barr virus ZEBRA protein. Mol Cell 21, 565-572.
Pope, J. H., Horne, M. K., and Scott, W. (1968). Transformation of foetal human keukocytes in vitro by filtrates of a human leukaemic cell line containing herpes-like virus. Int J Cancer 3, 857-866.
Proffitt, J., Crabtree, G., Grove, M., Daubersies, P., Bailleul, B., Wright, E., and Plumb, M. (1995). An ATF/CREB-binding site is essential for cell-specific and inducible transcription of the murine MIP-1 beta cytokine gene. Gene 152, 173-179.
Proost, P., Menten, P., Struyf, S., Schutyser, E., De Meester, I., and Van Damme, J. (2000). Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78beta into a most efficient monocyte attractant and CCR1 agonist. Blood 96, 1674-1680.
Rickinson, A. B., and Kieff, E. (2007). Epstein-Barr virus. In Fields'' virology D.M. Knipe, and P.M. Howley, eds. (Lippincott Williams & Wilkins, Philadelphia, Pa
), pp. 2655-2700.
Roberge, C. J., Larochelle, B., Rola-Pleszczynski, M., and Gosselin, J. (1997). Epstein-Barr virus induces GM-CSF synthesis by monocytes: effect on EBV-induced IL-1 and IL-1 receptor antagonist production in neutrophils. Virology 238, 344-352.
Roberts, M. L., and Cooper, N. R. (1998). Activation of a ras-MAPK-dependent pathway by Epstein-Barr virus latent membrane protein 1 is essential for cellular transformation. Virology 240, 93-99.
Salazar-Mather, T. P., and Hokeness, K. L. (2006). Cytokine and chemokine networks: pathways to antiviral defense. Curr Top Microbiol Immunol 303, 29-46.
Samanta, M., Iwakiri, D., and Takada, K. (2008). Epstein-Barr virus-encoded small RNA induces IL-10 through RIG-I-mediated IRF-3 signaling. Oncogene 27, 4150-4160.
Schall, T. J., Bacon, K., Camp, R. D., Kaspari, J. W., and Goeddel, D. V. (1993). Human macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta chemokines attract distinct populations of lymphocytes. J Exp Med 177, 1821-1826.
Shannon-Lowe, C. D., Neuhierl, B., Baldwin, G., Rickinson, A. B., and Delecluse, H. J. (2006). Resting B cells as a transfer vehicle for Epstein-Barr virus infection of epithelial cells. Proc Natl Acad Sci U S A 103, 7065-7070.
Sherry, B., Tekamp-Olson, P., Gallegos, C., Bauer, D., Davatelis, G., Wolpe, S. D., Masiarz, F., Coit, D., and Cerami, A. (1988). Resolution of the two components of macrophage inflammatory protein 1, and cloning and characterization of one of those components, macrophage inflammatory protein 1 beta. J Exp Med 168, 2251-2259.
Shimizu, N., Tanabe-Tochikura, A., Kuroiwa, Y., and Takada, K. (1994). Isolation of Epstein-Barr virus (EBV)-negative cell clones from the EBV-positive Burkitt''s lymphoma (BL) line Akata: malignant phenotypes of BL cells are dependent on EBV. J Virol 68, 6069-6073.
Sixbey, J. W., Vesterinen, E. H., Nedrud, J. G., Raab-Traub, N., Walton, L. A., and Pagano, J. S. (1983). Replication of Epstein-Barr virus in human epithelial cells infected in vitro. Nature 306, 480-483.
Skinnider, B. F., and Mak, T. W. (2002). The role of cytokines in classical Hodgkin lymphoma. Blood 99, 4283-4297.
Spieker-Polet, H., Hagen, K., and Teodorescu, M. (1985). The role of intercellular contacts in the activation of B lymphocytes by anti-immunoglobulin antibodies. J Immunol 134, 2827-2834.
Swinnen, L. J. (2000). Transplantation-related lymphoproliferative disorder: a model for human immunodeficiency virus-related lymphomas. Semin Oncol 27, 402-408.
Tanaka, Y., Adams, D. H., Hubscher, S., Hirano, H., Siebenlist, U., and Shaw, S. (1993). T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1 beta. Nature 361, 79-82.
Tanner, J. E., Alfieri, C., Chatila, T. A., and Diaz-Mitoma, F. (1996). Induction of interleukin-6 after stimulation of human B-cell CD21 by Epstein-Barr virus glycoproteins gp350 and gp220. J Virol 70, 570-575.
Taub, D. D., Conlon, K., Lloyd, A. R., Oppenheim, J. J., and Kelvin, D. J. (1993). Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1 alpha and MIP-1 beta. Science 260, 355-358.
Terrin, L., Dal Col, J., Rampazzo, E., Zancai, P., Pedrotti, M., Ammirabile, G., Bergamin, S., Rizzo, S., Dolcetti, R., and De Rossi, A. (2008). Latent membrane protein 1 of Epstein-Barr virus activates the hTERT promoter and enhances telomerase activity in B lymphocytes. J Virol 82, 10175-10187.
Tsai, S. C., Lin, S. J., Chen, P. W., Luo, W. Y., Yeh, T. H., Wang, H. W., Chen, C. J., and Tsai, C. H. (2009). EBV Zta protein induces the expression of interleukin-13, promoting the proliferation of EBV-infected B cells and lymphoblastoid cell lines. Blood 114, 109-118.
Tseng, P. C., Hsu, H. C., Janmanchi, D., Lin, C. H., Kuo, Y. H., Chou, C. K., and Yeh, S. F. (2008). Helioxanthin inhibits interleukin-1 beta-induced MIP-1 beta production by reduction of c-jun expression and binding of the c-jun/CREB1 complex to the AP-1/CRE site of the MIP-1 beta promoter in Huh7 cells. Biochem Pharmacol 76, 1121-1133.
Uchihara, J. N., Krensky, A. M., Matsuda, T., Kawakami, H., Okudaira, T., Masuda, M., Ohta, T., Takasu, N., and Mori, N. (2005). Transactivation of the CCL5/RANTES gene by Epstein-Barr virus latent membrane protein 1. Int J Cancer 114, 747-755.
van Dam, H., and Castellazzi, M. (2001). Distinct roles of Jun : Fos and Jun : ATF dimers in oncogenesis. Oncogene 20, 2453-2464.
Venkatesan, S., Petrovic, A., Van Ryk, D. I., Locati, M., Weissman, D., and Murphy, P. M. (2002). Reduced cell surface expression of CCR5 in CCR5Delta 32 heterozygotes is mediated by gene dosage, rather than by receptor sequestration. J Biol Chem 277, 2287-2301.
Vockerodt, M., Pinkert, D., Smola-Hess, S., Michels, A., Ransohoff, R. M., Tesch, H., and Kube, D. (2005). The Epstein-Barr virus oncoprotein latent membrane protein 1 induces expression of the chemokine IP-10: importance of mRNA half-life regulation. Int J Cancer 114, 598-605.
Wang, F., Gregory, C., Sample, C., Rowe, M., Liebowitz, D., Murray, R., Rickinson, A., and Kieff, E. (1990). Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23. J Virol 64, 2309-2318.
Wang, Z., Day, N., Trifillis, P., and Kiledjian, M. (1999). An mRNA stability complex functions with poly(A)-binding protein to stabilize mRNA in vitro. Mol Cell Biol 19, 4552-4560.
Widmer, U., Manogue, K. R., Cerami, A., and Sherry, B. (1993). Genomic cloning and promoter analysis of macrophage inflammatory protein (MIP)-2, MIP-1 alpha, and MIP-1 beta, members of the chemokine superfamily of proinflammatory cytokines. J Immunol 150, 4996-5012.
Wolpe, S. D., and Cerami, A. (1989). Macrophage inflammatory proteins 1 and 2: members of a novel superfamily of cytokines. FASEB J 3, 2565-2573.
Wolpe, S. D., Davatelis, G., Sherry, B., Beutler, B., Hesse, D. G., Nguyen, H. T., Moldawer, L. L., Nathan, C. F., Lowry, S. F., and Cerami, A. (1988). Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. J Exp Med 167, 570-581.
Yates, J. L., Warren, N., and Sugden, B. (1985). Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313, 812-815.
Young, L. S., Clark, D., Sixbey, J. W., and Rickinson, A. B. (1986). Epstein-Barr virus receptors on human pharyngeal epithelia. Lancet 1, 240-242.
Young, L. S., and Rowe, M. (1992). Epstein-Barr virus, lymphomas and Hodgkin''s disease. Semin Cancer Biol 3, 273-284.
Zhang, L., and Pagano, J. S. (2001). Interferon regulatory factor 7: a key cellular mediator of LMP-1 in EBV latency and transformation. Semin Cancer Biol 11, 445-453.
Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L., and Trono, D. (1997). Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15, 871-875.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔