(34.204.176.189) 您好!臺灣時間:2019/09/17 19:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:顧尚真
研究生(外文):Shang-Chen Ku
論文名稱:貝氏最大熵法於QuantumGIS上之建構–應用於台灣地區對空氣懸浮粒子長期暴露之研究
論文名稱(外文):Development of Bayesian Maximum Entropy Method Toolbox on Quantum GIS—An Application of Long-term Exposure Estimation of Particulate Matter in Taiwan
指導教授:余化龍
指導教授(外文):Hwa-Lung Yu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物環境系統工程學研究所
學門:工程學門
學類:土木工程學類
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:52
中文關鍵詞:貝氏最大熵法空氣懸浮粒子Quantum GISPython程式語言
外文關鍵詞:Bayesian maximum entropy (BME)Particulate matterQuantum GISPython programming language
相關次數:
  • 被引用被引用:3
  • 點閱點閱:3345
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究發展Quantum GIS上時空統計函式–貝氏最大熵法–的插件軟體 (Quantum Bayesian Maximum Entropy Toolbox, QtBME),可應用於非定常非同質時空過程之推估與繪圖。在時空過程可分成高頻與低頻之假設下,利用核心平滑法將原時空過程分離為定數的低頻趨勢與定常且同質之高頻時空隨機過程,並用粒子群最佳化演算法與AIC準則客觀選取適合高頻時空隨機過程之巢狀共變異數,進而利用貝氏最大熵法推估欲推點的資料特性。藉由Quantum GIS的圖形運算能力與內建地理資訊系統函式,QtBME能輕鬆地展現向量式與網格式二種地理資料格式推估的結果。本研究應用QtBME推估台灣地區從2004至2008年的空氣懸浮粒子PM10濃度,結果顯示,北部、雲嘉南、高屏等地為PM10濃度聚集的區域。花東、宜蘭則有較低的濃度。另外,暴露在高濃度( >50μg/m3 )懸浮粒子下的機率有週期性。一般來說,在3月開始下降到7月後,再由8月上升至隔年2月。交叉驗證的結果顯示,QtBME預測的相對誤差大部份落在 20%之內,偶有較高的誤差,為該測站特性與附近所提供的資訊較少所造成。
This study developed the Quantum Bayesian Maximum Entropy Toolbox (QtBME), which is a spatiotemporal statistics function, can be applied to estimate and map a non-stationary and non-homogeneous spatiotemporal process under the platform of Quantum GIS (QGIS) software. Kernel smoothing method is used to divide the original process into a deterministic trend and a stationary and homogeneous spatiotemporal process, assuming that a spatiotemporal process can be divided into high and low frequency. The covariance model of the process of high frequency is selected objectively by particle swarm optimization (PSO) method and Akaike''s information criterion (AIC). Bayesian maximum entropy method is then applied to spatiotemporal mapping of the variable of interest. By means of ability of geoprocessing as well as graphical computing and mapping in QGIS libraries, QtBME can display the results easily with two types of geographical data format, i.e., raster and vector formats. This study evaluated the long-term township-based exposure estimation of particulate matter (PM10) from 2004 to 2008 in Taiwan. Results showed that PM10 concentration are higher in Taipei, Tainan, and Kaohsiung, and lower in Taidon and Ilan. Moreover, the probability of the high PM10 exposure (i.e., higher than 50μg/m3) has strong seasonality; in general, it decreases from March to July and then increases from August to February. The results of cross validation show that QtBME provides satisfactory predictions for the PM10 with relative errors less than 20%. High relative error seldom occurred because of the particular characteristic of certain stations and lack of information provided from the stations in the estimation neighborhoods.
摘要 I
目錄 III
圖目錄 V
第一章 前言 - 1 -
1.1 相關背景介紹 - 1 -
1.2 研究動機與目的 - 3 -
1.3 本文架構 - 4 -
第二章 理論介紹 - 5 -
2.1 時空推估理論 - 5 -
2.2 核心平滑 - 6 -
2.3 巢狀時空共變異數模式推估 - 7 -
2.4 粒子群最佳化 - 8 -
2.5 貝氏最大熵法 - 10 -
第三章 QtBME之軟體開發與介紹 - 13 -
3.1 軟體開發的程式選擇 - 13 -
3.2 核心程式 - 16 -
3.3 軟體使用介紹 - 16 -
第四章 QtBME於台灣地區PM10推估應用 - 34 -
4.1 資料來源 - 34 -
4.2 處理流程 - 34 -
第五章 結果與討論 - 38 -
5.1 趨勢與殘差 - 38 -
5.2 巢狀共變異數函數 - 39 -
5.3 向量式出圖形態 - 40 -
5.4 網格式出圖形態 - 42 -
5.5 交叉驗證 - 44 -
第六章 結論與建議 - 47 -
6.1 結論 - 47 -
6.2 建議 - 48 -
參考文獻 - 50 -
1.詹俊南,1996,台灣地區PM10污染特性分析,國立臺灣大學環境工程研究所碩士學位論文。
2.楊忠盛,1998,台北都會區懸浮微粒特性及來源之探討,國立臺灣大學環境工程研究所碩士學位論文。
3.蔣本基,1992,北桃地區空氣污染受體模式應用之研究(三),行政院環境保護署。
4.顏有利,2002,空氣品質長期趨勢分析與年報編撰,行政院環境保護署。
5.Akaike H. (1974). A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19 (6), 716–723.
6.Christakos G. and Serre M.L. (2000). BME analysis of spatiotemporal particulate matter distributions in North Carolina, Atmosph. Environ. 34 (20), 3393–3406.
7.Christakos, G., & Olea, R. A. (2005). New space-time perspectives on the propagation characteristics of the Black Death epidemic and its relation to bubonic plague. Stochastic Environmental Research and Risk Assessment, 19, 307–314.
8.Cressie, N. (1989). The American Statistician. Geostatistics. 43(4), 197-202.
9.Eberhart R. and Kennedy J. (1995). A new optimizer using particle swarm theory. Presented at Proceedings of the Sixth InternationalSymposium on Micro Machine and Human Science, Nagora, Japan.
10.Eulogio Pardo-Igúzquiza, (1999). VARFIT: a fortran-77 program for fitting variogram models by weighted least squares. Computers & Geosciences, 25(3), 251-261.
11.Goodchild, M., (1992) Geographical information science. Int. J. Geographical information system, Vol. 6, No. 1, 31-45
12.H-L, Yu, Christakos G. and Chen J-C, (2007). Spatiotemporal air pollution modeling and prediction in epidemiologic research. In Air Pollution Research Trends, Columbus, F. (ed.), Nova Science Publishers, Inc., Hauppauge, NY. 57-75.
13.Marcella N. and Cira P. (2003). Kernel smoothing for the analysis of climatic data. Quaderni di Statistica Vol. 5.
14.Wand M. P. and Jones M. C. (1995). Bandwidth selection, Monographs on statistics and applied probability 60, Kernel smoothing, CRC Press, 63-64.
15.Geographic information system – Wikipedia, the free encyclopedia, Retrieved December 24, 2009, from the World Wide Web: http://en.wikipedia.org/wiki/Geographic_information_system
16.matplotlib: python plotting – Matplotlib v0.99.1.1documentation, Retrieved December 24, 2009, from the World Wide Web: http://matplotlib.sourceforge.net/
17.Python Programming Language -- Official Website, Retrieved December 24, 2009, from the World Wide Web: http://www.python.org/
18.Riverbank | Software | PyQt | What is PyQt?, Retrieved December 24, 2009, from the World Wide Web: http://www.riverbankcomputing.co.uk/software/pyqt/intro
19.The PyQt4 tutorial, Retrieved December 24, 2009, from the World Wide Web: http://zetcode.com/tutorials/pyqt4/
20.QGIS Coding and Compilation Guide, Retrieved December 24, 2009, from the World Wide Web: http://download.osgeo.org/qgis/doc/manual/qgis-1.3.0_coding-compilation_guide_en.pdf
21.Welcome to the Quantum GIS Project, Retrieved December 24, 2009, from the World Wide Web: http://qgis.org/
22.Writing Python Plugins –Quantum GIS Wiki, Retrieved December 24, 2009, from the World Wide Web: http://www.qgis.org/wiki/Writing_Python_Plugins
23.什麼是Python? Why Python?,民98年12月24日,取自: http://ez2learn.com/index.php/python-tutorials
24.Quantum GIS資源網@sinica,民98年12月24日,取自:http://gis.rchss.sinica.edu.tw/qgis/
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔