|
Abogadallah GM, Serag MM, Quick WP (2010) Fine and coarse regulation of reactive oxygen species in the salt tolerant mutants of barnyard grass and their wild-type parents under salt stress. Physiologia Plantarum 138: 60-73 Aono M, Saji H, Fujiyama K, Sugita M, Kondo N, Tanaka K (1995) Decrease in activity of glutathione reductase enhances paraquat sensitivity in transgenic Nicotiana tabacum. Plant Physiol. 107: 645-648 Aono M, Saji H, Sakamoto A, Tanaka K, Kondo N, Tanaka K (1995) Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase. Plant Cell Physiol. 36: 1687-1691 Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55: 373-399 Asada K (2000) The water-water cycle as alternative photon and electron sinks. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 355: 1419-1431 Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141: 391-396 Baier M, Noctor G, Foyer CH, Dietz KJ (2000) Antisense suppression of 2-cysteine peroxiredoxin in Arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. Plant Physiol. 124: 823-832 Bashir K, Nagasaka S, Itai RN, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants. Plant Mol Biol 65: 277-284 Bhatnagar-Mathur P, Vadez V, Sharma K (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27: 411-424 Boyer JS (1982) Plant productivity and environment. Science 218: 443-448 Burke JJ, Hatfield JL (1987) Plant morphological and biochemical responses to field water deficits effect of foliage temperature on the potential activity of glutathione-reductase. Plant Physiol. 85: 100-103 Casano LM, Martn M, Zapata JM, Sabater B (1999) Leaf age- and paraquat concentration-dependent effects on the levels of enzymes protecting against photooxidative stress. Plant Science 149: 13-22 Chalapathi Rao ASV, Reddy AR (2008) Glutathione reductase: a putative redox regulatory system in plant cells. In Sulfur assimilation and bbiotic stress in plants, pp 111-147 Charles SA, Halliwell B (1981) Light activation of fructose bisphosphatase in photosynthetically competent pea chloroplasts. Biochem J 200: 357-363 Chen K-M, Gong H-J, Chen G-C, Wang S-M, Zhang C-L (2004) Gradual drought under field conditions influences the glutathione metabolism, redox balance and energy supply in spring wheat. Journal of Plant Growth Regulation 23: 20-28 Chen Y-P, Xing L-P, Wu G-J, Wang H-Z, Wang X-E, Cao A-Z, Chen P-D (2007) Plastidial glutathione reductase from haynaldia villosa is an enhancer of powdery mildew resistance in wheat (Triticum Aestivum). Plant Cell Physiol. 48: 1702-1712 Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. Journal of Biological Chemistry 278: 46869-46877 Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45: 437-448 Christina L, Agnieszka Z, Henrik Toft S, Per Lassen N, Andreas B, Anna H (2008) Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiologia Plantarum 134: 508-521 Comba M, a E, Benavides M, a P, Tomaro M, a L (1998) Effect of salt stress on antioxidant defence system in soybean root nodules. Functional Plant Biology 25: 665-671 Conn EE, Vennesland B (1951) Glutathione reductase of wheat germ Journal of Biological Chemistry 192: 17-28 Connell JP, Mullet JE (1986) Pea chloroplast glutathione-reductase - purification and characterization. Plant Physiol. 82: 351-356 Contour-Ansel D, Torres-Franklin ML, Cruz DECMH, D''Arcy-Lameta A, Zuily-Fodil Y (2006) Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Ann Bot 98: 1279-1287 Creissen GP, Mullineaux PM (1995) Cloning and characterisation of glutathione reductase cDNAs and identification of two genes encoding the tobacco enzyme. Planta 197: 422-425 Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J. Exp. Bot. 55: 205-212 Ding S, Lu Q, Zhang Y, Yang Z, Wen X, Zhang L, Lu C (2009) Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol Biol 69: 577-592 Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Science 135: 1-9 Edwards EA, Rawsthorne S, Mullineaux PM (1990) Primary structure and properties of glutathione reductase from Arabidopsis thaliana Planta 180: 278-284 Elizabeth AHP-S, Yong Liang Z, Tobin S, Norman T (2000) Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiologia Plantarum 110: 455-460 Flowers T, Garcia A, Koyama M, Yeo A (1997) Breeding for salt tolerance in crop plants — the role of molecular biology. Acta Physiologiae Plantarum 19: 427-433 Flowers TJ (2004) Improving crop salt tolerance. J. Exp. Bot. 55: 307-319 Foyer C, Lelandais M, Galap C, Kunert KJ (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol. 97: 863-872 Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133: 21-25 Garreton V, Carpinelli J, Jordana X, Holuigue L (2002) The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiol. 130: 1516-1526 Gary C, Helen R, Yongbiao X, Phil M (1995) Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco. Plant J 8: 167-175 Hagar H, Ueda N, Shah SV (1996) Role of reactive oxygen metabolites in DNA damage and cell death in chemical hypoxic injury to LLC-PK1 cells. Am J Physiol 271: F209-215 Halliwell B, Foyer CH (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139: 9-17 Hamid Badawi G, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Science 166: 919-928 Henmi K, Demura T, Tsuboi S, Fukuda H, Iwabuchi M, Ogawa Ki (2005) Change in the redox state of glutathione regulates differentiation of tracheary elements in zinnia cells and Arabidopsis roots. Plant Cell Physiol. 46: 1757-1765 Hernández JA, Francisco JC, Gómez M, Francisca S (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiologia Plantarum 89: 103-110 Hobo T, Asada M, Kowyama Y, Hattori T (1999) ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J 19: 679-689 Hong CY, Chao YY, Yang MY, Cho SC, Huei Kao C (2009) Na(+) but not Cl(-) or osmotic stress is involved in NaCl-induced expression of Glutathione reductase in roots of rice seedlings. J Plant Physiol 166: 1598-1606 Hong C-Y, Chao Y-Y, Yang M-Y, Cheng S-Y, Cho S-C, Kao C (2009) NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant and Soil 320: 103-115 Hong C-Y, Hsu YT, Tsai Y-C, Kao CH (2007) Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J. Exp. Bot. 58: 3273-3283 Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J. Exp. Bot. 56: 3041-3049 Hung KT, Kao CH (2004) Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. Journal of Plant Physiology 161: 1347-1357 Ivan KS, Thomas LV, Carol AT (1989) Properties and functions of glutathione reductase in plants. Physiologia Plantarum 77: 449-456 Jamil M, Lee KB, Jung KY, Lee DB, Han MS, Rha ES (2007) Salt stress inhibits germination and early seedling growth in cabbage (Brassica oleracea capitata L.). Pak J Biol Sci 10: 910-914 Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol. 42: 1265-1273 Jin XL, Huang YZ, Zeng FR, Zhou MX, Zhang GP (2009) Genotypic difference in response of peroxidase and superoxide dismutase isozymes and activities to salt stress in barley. Acta Physiologiae Plantarum 31: 1103-1109 Jithesh MN, Prashanth SR, Sivaprakash KR, Parida A (2006) Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Rep 25: 865-876 Joanna EW, Ruth RF (1995) Arabidopsis mutants with reduced response to NaCl and osmotic stress. Physiologia Plantarum 93: 659-666 Kaminaka H, Morita S, Nakajima M, Masumura T, Tanaka K (1998) Gene cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.). Plant Cell Physiol 39: 1269-1280 Kim DW, Shibato J, Agrawal GK, Fujihara S, Iwahashi H, Kim du H, Shim Ie S, Rakwal R (2007) Gene transcription in the leaves of rice undergoing salt-induced morphological changes (Oryza sativa L.). Mol. Cells 24: 45-59 Kotchoni SO, Gachomo EW (2006) The reactive oxygen species network pathways:an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J Biosci 31: 389-404 Kouřil R, Lazár D, Lee H, Jo J, Nauš J (2003) Moderately elevated temperature eliminates resistance of rice plants with enhanced expression of glutathione reductase to intensive photooxidative stress. Photosynthetica 41: 571-578 Kubo A, Sano T, Saji H, Tanaka K, Kondo N (1993) Primary structure and properties of glutathione-reductase from Arabidopsis thaliana. Plant and Cell Physiology 34: 1259-1266 Lascano HR, Casano LM, Melchiorre MN, Trippi VS (2001) Biochemical and molecular characterisation of wheat chloroplastic glutathione reductase. Biologia Plantarum 44: 509-516 Lascano HR, Gomez LD, Casano LM, Trippi VS (1999) Wheat chloroplastic glutathione reductase activity is regulated by the combined effect of pH, NADPH and GSSG. Plant Cell Physiol. 40: 683-690 Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Journal of Plant Physiology 158: 737-745 Lin CC, Kao CH (2001) Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Science 160: 323-329 Lin JN, Kao CH (2000) Involvement of lipid peroxidation in water stress-promoted senescence of detached rice leaves. Biologia Plantarum 43: 141-145 Madamanchi NR, Anderson JV, Alscher RG, Cramer CL, Hess JL (1992) Purification of multiple forms of glutathione reductase from pea (Pisum sativum L.) seedlings and enzyme levels in ozone-fumigated pea leaves. Plant Physiol. 100: 138-145 Marty L, Siala W, Schwarzlander M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y, Meyer AJ, Reichheld JP, Hell R (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci U S A 106: 9109-9114 Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52: 711-760 Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou J-P, Noctor G (2010) Arabidopsis GLUTATHIONE REDUCTASE 1 plays a crucial role in leaf responses to intracellular H2O2 and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol.: pp.110.153767 Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol. 144: 1777-1785 Minami Y, Kohama T, Sekimoto YJ, Akasaka K, Matsubara H (2003) Isolation and characterization of glutathione reductase from Physarum polycephalum and stage-specific expression of the enzyme in life-cycle stages with different oxidation-reduction levels. J Eukaryot Microbiol 50: 317-323 Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405-410 Muller EGD (1996) A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Molecular Biology of the Cell 7: 1805-1813 Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell and Environment 16: 15-24 Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651-681 Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880 Niewiadomska E, Karpinska B, Romanowska E, Slesak I, Karpinski S (2004) A salinity-induced C3-CAM transition increases energy conservation in the halophyte Mesembryanthemum crystallinum L. Plant Cell Physiol. 45: 789-794 Payton P, Webb R, Kornyeyev D, Allen R, Holaday AS (2001) Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. J. Exp. Bot. 52: 2345-2354 Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101: 9971-9975 Rouhier N, Couturier J, Jacquot J-P (2006) Genome-wide analysis of plant glutaredoxin systems. J. Exp. Bot. 57: 1685-1696 Rouhier N, Lemaire SD, Jacquot J-P (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annual Review of Plant Biology 59: 143-166 Sahi, Sahi C, Agarwal, Agarwal M, Reddy, Reddy M, Sopory, Sopory S, Grover, Grover A (2003) Isolation and expression analysis of salt stress-associated ESTs from contrasting rice cultivars using a PCR-based subtraction method. Theo. Appl. Genet. 106: 620-628 Sairam R, Srivastava G, Agarwal S, Meena R (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum 49: 85-91 Sairam RK, Shukla DS, Saxena DC (1997) Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. Biologia Plantarum 40: 357-364 Sakamoto A, Murata AN (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38: 1011-1019 Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38: 995-1014 Serrano A (1992) Purification, characterization and function of dihydrolipoamide dehydrogenase from the cyanobacterium anabaena sp strain pcc 7119. Biochem J 288: 823-830 Serrano A, Rivas J, Losada M (1984) Purification and properties of glutathione-reductase from the cyanobacterium anabaena sp strain-7119. Journal of Bacteriology 158: 317-324 Shin JH, Yoshimoto K, Ohsumi Y, Jeon JS, An G (2009) OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Molecules and Cells 27: 67-74 Shou-Qiang O, Yun-Feng L, Peng L, Gang L, Si-Jie H, Biao M, Wan-Ke Z, Jin-Song Z, Shou-Yi C (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62: 316-329 Skinner DZ (2006) Plant abiotic stress. J Environ Qual 35: 955-956 Smirnoff N, Colomb (1988) Drought Influences the Activity of Enzymes of the Chloroplast Hydrogen Peroxide Scavenging System. J. Exp. Bot. 39: 1097-1108 Strohm M, Eiblmeier M, Langebartels C, Jouanin L, Polle A, Sandermann H, Rennenberg H (1999) Responses of transgenic poplar (Populus tremula x P. alba) overexpressing glutathione synthetase or glutathione reductase to acute ozone stress: visible injury and leaf gas exchange. J. Exp. Bot. 50: 363-372 Sumer A, Zorb C, Yan F, Schubert S (2004) Evidence of sodium toxicity for the vegetative growth of maize (Zea mays L.) during the first phase of salt stress. Journal of Applied Botany and Food Quality-Angewandte Botanik 78: 135-139 Tanaka K, Saji H, Kondo N (1988) Immunological properties of spinach glutathione-reductase and inductive biosynthesis of the enzyme with ozone. Plant and Cell Physiology 29: 637-642 Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Science 148: 131-138 Tsai YC, Hong CY, Liu LF, Kao CH (2005) Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. J Plant Physiol 162: 291-299 Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol. 135: 1206-1220 Uddin MI, Rashid MH, Khan N, Perveen MF, Tai TH, Tanaka K (2007) Selection of promising salt tolerant rice mutants derived from cultivar ''Drew'' and their antioxidant enzymes activity under salt stress. Sabrao Journal of Breeding and Genetics 39: 89-98 Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. Journal of Plant Physiology 163: 1179-1184 Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology 16: 123-132 Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2: 73-83 Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, hva1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110: 249-257 Zago E, Morsa S, Dat JF, Alard P, Ferrarini A, Inze D, Delledonne M, Van Breusegem F (2006) Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. Plant Physiol. 141: 404-411
|