(3.236.175.108) 您好!臺灣時間:2021/03/01 12:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林婉容
研究生(外文):Wan-Rung Lin
論文名稱:Glutathione Reductase 3 對水稻鹽分逆境功能之研究
論文名稱(外文):Studies on the role of glutathione reductase 3 in salt stress of rice
指導教授:洪傳揚
指導教授(外文):Chwan-Yang Hong
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:94
中文關鍵詞:穀胱甘肽過還原酶抗氧化酵素鹽分逆境氧化逆境轉殖水稻
外文關鍵詞:glutathione reductaseantioxidative enzymessalt stressoxidative stresstransgenic plant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:388
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鹽分逆境常誘導活化氧族(reactive oxygen species , ROS)產生,對植物造成氧化傷害,植物為了降低鹽分逆境下的氧化傷害發展出許多應對的策略,如ascorbate-glutathione cycle(ASC-GSH cycle),其中 glutathione reductase(GR)在 ASH-GSH cycle 中扮演重要角色,負責將氧化態的GSSG 還原為GSH。水稻GR 基因家族由三個基因組成,分別為細胞質的OsGR2,和葉綠體的 OsGR1及OsGR3。我們過去的研究發現 OsGR3 在水稻幼苗根部受 NaCl 和 abscisic acid 誘導表現,但是其胺基酸序列由於缺失了重要的 FAD 結合功能區塊,被認為是一個不具有功能的 GR 同功酵素。本試驗透過水稻序列資料庫比對 OsGR3 序列後,發現在預測序列 N 端應存在一個 FAD 結合功能區塊,為進一步了解此一全長的 OsGR3 是否具有GR 活性,及鹽分逆境對 OsGR3 的反應,本試驗透過大量表現 OsGR3 及osgr3 突變體研究其功能。結果顯示, osgr3 突變株會降低 42% 的 GR 活性,同時幼苗表現出對鹽分敏感的外表型,處理鹽分一週後 osgr3 存活率僅為 9%,在第二片葉片會累積較多的 H2O2,並降低 Fv/Fm。進一步分析發現,osgr3 幼苗在鹽分逆境下,ascorbate (ASC) 含量減少,且ASC/DHA(dehydroascorbate)降低,推測這可能是導致 osgr3 不耐鹽分逆境之原因。在大量表現 OsGR3 植株中,GR 活性提高 3~6 倍,並比 WT 有較高鹽分耐受性,且大量表現 OsGR3 之轉殖株含有較高的 ASC 含量。而在大量表現 FAD 缺失的OsGR3tc 轉殖株中,GR 活性降低,且植株不耐鹽。另一方面,將 OsGR3 轉殖回 osgr3 的功能補償轉殖株則可增加 3~5 倍 GR 活性降低,並回復對高鹽逆境的耐受性。此外,以 methyl viologen (MV) 處理水稻葉圓片,結果顯示抵抗葉綠素降解能力以 osgr3 功能補償植株最佳,其次為 WT,而以 osgr3 居於最後,顯示OsGR3和水稻抗氧化逆境有關。綜合以上結果,OsGR3不但具有 GR 活性,並與水稻的鹽分耐受性及抗氧化逆境有關。

Salt stress results in an excessive generation of reactive oxygen species (ROS) that causes oxidative damage to plants. Plants evolve certain strategies to remove salt-induced reactive oxygen species (ROS), such as glutathione-ascorbate cycle (ASH-GSH cycle). Glutathione reductase (GR) plays an important role in ASC-GSH cycle, which converted oxidized GSH (GSSG) to reduced GSH. Three GR genes exist in rice, including a cytosolic (OsGR2) and two chloroplastic isoforms (OsGR1 and OsGR3). Our previous study demonstrated that expression of OsGR3 was increased in response to NaCl and abscisic acid in roots of etiolated rice seedlings. The OsGR3 has been considered to be a non-functional GR isozyme due to the lack of a FAD binding domain and chloroplastic transit sequence (CTS). However, after blasting different rice database, we found a full length OsGR3 open reading frame with complete FAD binding domain and CTS. To investigate the physiological roles of OsGR3 in salt stress and to understand whether the OsGR3 is a functional GR, OsGR3 knockout mutant and overexpression transgenic rice were analyzed in this thesis. In osgr3, 42% GR activity was decreased and salt sensitivity was enhanced. Physiological responses of osgr3 rice mutant revealed that the maximal efficiency of photosystem II and survival rate were notably reduced as compared to WT, and H2O2 was increased after 200 mM NaCl treatment. One of the reasons caused osgr3 mutant intolerant to salt stress is that osgr3 had lower ascorbate content and lower ratio of ascobate/dehydroascorbate than WT rice. Overexpression of OsGR3 in rice plants increased three to six times of GR activity, and also increased transformant''s salt tolerance. Higher ascorbate content in overexpression OsGR3 transgenic rice as compared to WT was also observed. However, overexpression of OsGR3tc, lack of FAD binding domain, diminished GR activity, and transgenic rice were sensitive to salt stress. On the other hand, complementation of osgr3 with OsGR3 (osgr3/OsGR3) increased three to five times of GR activity and restored salt stress tolerance. Meanwhile, leaf discs of osgr3, WT and complementation treated with methyl viologen showed that the degrees of chlorophyll bleaching from osgr3 to WT then osgr3/OsGR3, indicating that OsGR3 is important for oxidative defense system. Our results suggested that OsGR3 is a functional GR, and is involved in salt and oxidative tolerance.

誌謝 ii
中文摘要 iv
ABSTRACT v
縮寫字對照 vii
目錄 viii
圖目錄 xi
表目錄 xiii
附表目錄 xiii
壹、 前人研究 1
一、 非生物逆境對作物產量及品質的影響 1
二、 氧化逆境對植物生長發育的影響 1
三、 植物的抗氧化機制 2
四、 鹽分逆境對植物生長發育的影響 4
五、 植物Glutathione reductase(GR)的生化特性與生理功能 5
5.1 GR 的生化特性 6
5.2 GR 的構造 6
5.3 GR 基因及其相似度(homology) 7
5.4 GR 的同功酵素(isoenzyme) 8
5.5 GR活性與植物逆境耐受性的關係 8
5.6 GR 在植物的功能 10
六、 水稻 OsGR 基因家族特性分析 13
貳、 本論文研究目的及實驗架構 15
參、 材料與方法 16
一、 植物材料的準備及生長條件 16
二、 質粒的構築 16
三、 水稻基因轉殖 21
四、 基因表現分析材料準備及處理 23
五、 基因表現分析 27
六、 基因型分析(genotyping) 28
七、 水稻逆境處理及生理分析 29
八、 GR同功酵素染色分析 34
九、 啟動子特性分析 34
十、 統計分析 35
肆、 結果 36
一、 水稻 GR3 分子特性分析 36
1.1 OsGR3 基因基因結構分析 36
1.2 OsGR3 基因組織專一性表現 36
1.3 OsGR3 啟動子的特性分析 37
二、 OsGR3基因剔除突變株的功能分析 38
2.1 OsGR3 基因Tos17 突變株的分子鑑定 38
2.2 失去OsGR3降低水稻植株對鹽分及氧化逆境的耐受性 39
2.3 以OsGR3 補償突變株 osgr3 之水稻植株可以恢復植株對鹽分逆境及氧化逆境的耐受性。 41
2.4 大量表現OsGR3及 OsGR3tc轉殖株分析 42
2.5 大量表現OsGR3 及OsGR3tc 轉殖株對鹽分逆境及氧化逆境的耐受性 43
伍、 討論 44
一、 鹽分逆境會增加 GR 活性 44
二、 水稻 GR3 分子特性分析 44
三、 OsGR3 的組織專一性及啟動子的特性分析 44
四、 水稻 GR3 是一個有活性的 Glutathione Reductase,而 OsGR3tc 則否 46
五、 OsGR3 參與水稻對鹽分逆境的耐受性的調控 48
六、 OsGR3 參與水稻對氧化逆境耐受性的調控 51
陸、 參考文獻 52
柒、 附錄 85
一、 水稻基因轉殖用培養基列表 85
二、 木村氏(Kimura)水耕液配方(helf-strength) 88
三、 原態膠體電泳分析 89
四、 試驗所用載體(利用 vector NTI 繪製) 91


Abogadallah GM, Serag MM, Quick WP (2010) Fine and coarse regulation of reactive oxygen species in the salt tolerant mutants of barnyard grass and their wild-type parents under salt stress. Physiologia Plantarum 138: 60-73
Aono M, Saji H, Fujiyama K, Sugita M, Kondo N, Tanaka K (1995) Decrease in activity of glutathione reductase enhances paraquat sensitivity in transgenic Nicotiana tabacum. Plant Physiol. 107: 645-648
Aono M, Saji H, Sakamoto A, Tanaka K, Kondo N, Tanaka K (1995) Paraquat tolerance of transgenic Nicotiana tabacum with enhanced activities of glutathione reductase and superoxide dismutase. Plant Cell Physiol. 36: 1687-1691
Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55: 373-399
Asada K (2000) The water-water cycle as alternative photon and electron sinks. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 355: 1419-1431
Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141: 391-396
Baier M, Noctor G, Foyer CH, Dietz KJ (2000) Antisense suppression of 2-cysteine peroxiredoxin in Arabidopsis specifically enhances the activities and expression of enzymes associated with ascorbate metabolism but not glutathione metabolism. Plant Physiol. 124: 823-832
Bashir K, Nagasaka S, Itai RN, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants. Plant Mol Biol 65: 277-284
Bhatnagar-Mathur P, Vadez V, Sharma K (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27: 411-424
Boyer JS (1982) Plant productivity and environment. Science 218: 443-448
Burke JJ, Hatfield JL (1987) Plant morphological and biochemical responses to field water deficits effect of foliage temperature on the potential activity of glutathione-reductase. Plant Physiol. 85: 100-103
Casano LM, Martn M, Zapata JM, Sabater B (1999) Leaf age- and paraquat concentration-dependent effects on the levels of enzymes protecting against photooxidative stress. Plant Science 149: 13-22
Chalapathi Rao ASV, Reddy AR (2008) Glutathione reductase: a putative redox regulatory system in plant cells. In Sulfur assimilation and bbiotic stress in plants, pp 111-147
Charles SA, Halliwell B (1981) Light activation of fructose bisphosphatase in photosynthetically competent pea chloroplasts. Biochem J 200: 357-363
Chen K-M, Gong H-J, Chen G-C, Wang S-M, Zhang C-L (2004) Gradual drought under field conditions influences the glutathione metabolism, redox balance and energy supply in spring wheat. Journal of Plant Growth Regulation 23: 20-28
Chen Y-P, Xing L-P, Wu G-J, Wang H-Z, Wang X-E, Cao A-Z, Chen P-D (2007) Plastidial glutathione reductase from haynaldia villosa is an enhancer of powdery mildew resistance in wheat (Triticum Aestivum). Plant Cell Physiol. 48: 1702-1712
Chew O, Whelan J, Millar AH (2003) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. Journal of Biological Chemistry 278: 46869-46877
Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45: 437-448
Christina L, Agnieszka Z, Henrik Toft S, Per Lassen N, Andreas B, Anna H (2008) Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiologia Plantarum 134: 508-521
Comba M, a E, Benavides M, a P, Tomaro M, a L (1998) Effect of salt stress on antioxidant defence system in soybean root nodules. Functional Plant Biology 25: 665-671
Conn EE, Vennesland B (1951) Glutathione reductase of wheat germ Journal of Biological Chemistry 192: 17-28
Connell JP, Mullet JE (1986) Pea chloroplast glutathione-reductase - purification and characterization. Plant Physiol. 82: 351-356
Contour-Ansel D, Torres-Franklin ML, Cruz DECMH, D''Arcy-Lameta A, Zuily-Fodil Y (2006) Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Ann Bot 98: 1279-1287
Creissen GP, Mullineaux PM (1995) Cloning and characterisation of glutathione reductase cDNAs and identification of two genes encoding the tobacco enzyme. Planta 197: 422-425
Desikan R, Cheung MK, Bright J, Henson D, Hancock JT, Neill SJ (2004) ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J. Exp. Bot. 55: 205-212
Ding S, Lu Q, Zhang Y, Yang Z, Wen X, Zhang L, Lu C (2009) Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Mol Biol 69: 577-592
Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Science 135: 1-9
Edwards EA, Rawsthorne S, Mullineaux PM (1990) Primary structure and properties of glutathione reductase from Arabidopsis thaliana Planta 180: 278-284
Elizabeth AHP-S, Yong Liang Z, Tobin S, Norman T (2000) Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiologia Plantarum 110: 455-460
Flowers T, Garcia A, Koyama M, Yeo A (1997) Breeding for salt tolerance in crop plants — the role of molecular biology. Acta Physiologiae Plantarum 19: 427-433
Flowers TJ (2004) Improving crop salt tolerance. J. Exp. Bot. 55: 307-319
Foyer C, Lelandais M, Galap C, Kunert KJ (1991) Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiol. 97: 863-872
Foyer CH, Halliwell B (1976) The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133: 21-25
Garreton V, Carpinelli J, Jordana X, Holuigue L (2002) The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiol. 130: 1516-1526
Gary C, Helen R, Yongbiao X, Phil M (1995) Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco. Plant J 8: 167-175
Hagar H, Ueda N, Shah SV (1996) Role of reactive oxygen metabolites in DNA damage and cell death in chemical hypoxic injury to LLC-PK1 cells. Am J Physiol 271: F209-215
Halliwell B, Foyer CH (1978) Properties and physiological function of a glutathione reductase purified from spinach leaves by affinity chromatography. Planta 139: 9-17
Hamid Badawi G, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Science 166: 919-928
Henmi K, Demura T, Tsuboi S, Fukuda H, Iwabuchi M, Ogawa Ki (2005) Change in the redox state of glutathione regulates differentiation of tracheary elements in zinnia cells and Arabidopsis roots. Plant Cell Physiol. 46: 1757-1765
Hernández JA, Francisco JC, Gómez M, Francisca S (1993) Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiologia Plantarum 89: 103-110
Hobo T, Asada M, Kowyama Y, Hattori T (1999) ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J 19: 679-689
Hong CY, Chao YY, Yang MY, Cho SC, Huei Kao C (2009) Na(+) but not Cl(-) or osmotic stress is involved in NaCl-induced expression of Glutathione reductase in roots of rice seedlings. J Plant Physiol 166: 1598-1606
Hong C-Y, Chao Y-Y, Yang M-Y, Cheng S-Y, Cho S-C, Kao C (2009) NaCl-induced expression of glutathione reductase in roots of rice (Oryza sativa L.) seedlings is mediated through hydrogen peroxide but not abscisic acid. Plant and Soil 320: 103-115
Hong C-Y, Hsu YT, Tsai Y-C, Kao CH (2007) Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. J. Exp. Bot. 58: 3273-3283
Huang C, He W, Guo J, Chang X, Su P, Zhang L (2005) Increased sensitivity to salt stress in an ascorbate-deficient Arabidopsis mutant. J. Exp. Bot. 56: 3041-3049
Hung KT, Kao CH (2004) Hydrogen peroxide is necessary for abscisic acid-induced senescence of rice leaves. Journal of Plant Physiology 161: 1347-1357
Ivan KS, Thomas LV, Carol AT (1989) Properties and functions of glutathione reductase in plants. Physiologia Plantarum 77: 449-456
Jamil M, Lee KB, Jung KY, Lee DB, Han MS, Rha ES (2007) Salt stress inhibits germination and early seedling growth in cabbage (Brassica oleracea capitata L.). Pak J Biol Sci 10: 910-914
Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol. 42: 1265-1273
Jin XL, Huang YZ, Zeng FR, Zhou MX, Zhang GP (2009) Genotypic difference in response of peroxidase and superoxide dismutase isozymes and activities to salt stress in barley. Acta Physiologiae Plantarum 31: 1103-1109
Jithesh MN, Prashanth SR, Sivaprakash KR, Parida A (2006) Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Rep 25: 865-876
Joanna EW, Ruth RF (1995) Arabidopsis mutants with reduced response to NaCl and osmotic stress. Physiologia Plantarum 93: 659-666
Kaminaka H, Morita S, Nakajima M, Masumura T, Tanaka K (1998) Gene cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.). Plant Cell Physiol 39: 1269-1280
Kim DW, Shibato J, Agrawal GK, Fujihara S, Iwahashi H, Kim du H, Shim Ie S, Rakwal R (2007) Gene transcription in the leaves of rice undergoing salt-induced morphological changes (Oryza sativa L.). Mol. Cells 24: 45-59
Kotchoni SO, Gachomo EW (2006) The reactive oxygen species network pathways:an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J Biosci 31: 389-404
Kouřil R, Lazár D, Lee H, Jo J, Nauš J (2003) Moderately elevated temperature eliminates resistance of rice plants with enhanced expression of glutathione reductase to intensive photooxidative stress. Photosynthetica 41: 571-578
Kubo A, Sano T, Saji H, Tanaka K, Kondo N (1993) Primary structure and properties of glutathione-reductase from Arabidopsis thaliana. Plant and Cell Physiology 34: 1259-1266
Lascano HR, Casano LM, Melchiorre MN, Trippi VS (2001) Biochemical and molecular characterisation of wheat chloroplastic glutathione reductase. Biologia Plantarum 44: 509-516
Lascano HR, Gomez LD, Casano LM, Trippi VS (1999) Wheat chloroplastic glutathione reductase activity is regulated by the combined effect of pH, NADPH and GSSG. Plant Cell Physiol. 40: 683-690
Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Journal of Plant Physiology 158: 737-745
Lin CC, Kao CH (2001) Abscisic acid induced changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Science 160: 323-329
Lin JN, Kao CH (2000) Involvement of lipid peroxidation in water stress-promoted senescence of detached rice leaves. Biologia Plantarum 43: 141-145
Madamanchi NR, Anderson JV, Alscher RG, Cramer CL, Hess JL (1992) Purification of multiple forms of glutathione reductase from pea (Pisum sativum L.) seedlings and enzyme levels in ozone-fumigated pea leaves. Plant Physiol. 100: 138-145
Marty L, Siala W, Schwarzlander M, Fricker MD, Wirtz M, Sweetlove LJ, Meyer Y, Meyer AJ, Reichheld JP, Hell R (2009) The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proc Natl Acad Sci U S A 106: 9109-9114
Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52: 711-760
Mhamdi A, Hager J, Chaouch S, Queval G, Han Y, Taconnat L, Saindrenan P, Gouia H, Issakidis-Bourguet E, Renou J-P, Noctor G (2010) Arabidopsis GLUTATHIONE REDUCTASE 1 plays a crucial role in leaf responses to intracellular H2O2 and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiol.: pp.110.153767
Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R (2007) Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiol. 144: 1777-1785
Minami Y, Kohama T, Sekimoto YJ, Akasaka K, Matsubara H (2003) Isolation and characterization of glutathione reductase from Physarum polycephalum and stage-specific expression of the enzyme in life-cycle stages with different oxidation-reduction levels. J Eukaryot Microbiol 50: 317-323
Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405-410
Muller EGD (1996) A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth. Molecular Biology of the Cell 7: 1805-1813
Munns R (1993) Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell and Environment 16: 15-24
Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59: 651-681
Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880
Niewiadomska E, Karpinska B, Romanowska E, Slesak I, Karpinski S (2004) A salinity-induced C3-CAM transition increases energy conservation in the halophyte Mesembryanthemum crystallinum L. Plant Cell Physiol. 45: 789-794
Payton P, Webb R, Kornyeyev D, Allen R, Holaday AS (2001) Protecting cotton photosynthesis during moderate chilling at high light intensity by increasing chloroplastic antioxidant enzyme activity. J. Exp. Bot. 52: 2345-2354
Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101: 9971-9975
Rouhier N, Couturier J, Jacquot J-P (2006) Genome-wide analysis of plant glutaredoxin systems. J. Exp. Bot. 57: 1685-1696
Rouhier N, Lemaire SD, Jacquot J-P (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annual Review of Plant Biology 59: 143-166
Sahi, Sahi C, Agarwal, Agarwal M, Reddy, Reddy M, Sopory, Sopory S, Grover, Grover A (2003) Isolation and expression analysis of salt stress-associated ESTs from contrasting rice cultivars using a PCR-based subtraction method. Theo. Appl. Genet. 106: 620-628
Sairam R, Srivastava G, Agarwal S, Meena R (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biologia Plantarum 49: 85-91
Sairam RK, Shukla DS, Saxena DC (1997) Stress induced injury and antioxidant enzymes in relation to drought tolerance in wheat genotypes. Biologia Plantarum 40: 357-364
Sakamoto A, Murata AN (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol Biol 38: 1011-1019
Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38: 995-1014
Serrano A (1992) Purification, characterization and function of dihydrolipoamide dehydrogenase from the cyanobacterium anabaena sp strain pcc 7119. Biochem J 288: 823-830
Serrano A, Rivas J, Losada M (1984) Purification and properties of glutathione-reductase from the cyanobacterium anabaena sp strain-7119. Journal of Bacteriology 158: 317-324
Shin JH, Yoshimoto K, Ohsumi Y, Jeon JS, An G (2009) OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Molecules and Cells 27: 67-74
Shou-Qiang O, Yun-Feng L, Peng L, Gang L, Si-Jie H, Biao M, Wan-Ke Z, Jin-Song Z, Shou-Yi C (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62: 316-329
Skinner DZ (2006) Plant abiotic stress. J Environ Qual 35: 955-956
Smirnoff N, Colomb (1988) Drought Influences the Activity of Enzymes of the Chloroplast Hydrogen Peroxide Scavenging System. J. Exp. Bot. 39: 1097-1108
Strohm M, Eiblmeier M, Langebartels C, Jouanin L, Polle A, Sandermann H, Rennenberg H (1999) Responses of transgenic poplar (Populus tremula x P. alba) overexpressing glutathione synthetase or glutathione reductase to acute ozone stress: visible injury and leaf gas exchange. J. Exp. Bot. 50: 363-372
Sumer A, Zorb C, Yan F, Schubert S (2004) Evidence of sodium toxicity for the vegetative growth of maize (Zea mays L.) during the first phase of salt stress. Journal of Applied Botany and Food Quality-Angewandte Botanik 78: 135-139
Tanaka K, Saji H, Kondo N (1988) Immunological properties of spinach glutathione-reductase and inductive biosynthesis of the enzyme with ozone. Plant and Cell Physiology 29: 637-642
Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Science 148: 131-138
Tsai YC, Hong CY, Liu LF, Kao CH (2005) Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. J Plant Physiol 162: 291-299
Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol. 135: 1206-1220
Uddin MI, Rashid MH, Khan N, Perveen MF, Tai TH, Tanaka K (2007) Selection of promising salt tolerant rice mutants derived from cultivar ''Drew'' and their antioxidant enzymes activity under salt stress. Sabrao Journal of Breeding and Genetics 39: 89-98
Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. Journal of Plant Physiology 163: 1179-1184
Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology 16: 123-132
Xiao BZ, Chen X, Xiang CB, Tang N, Zhang QF, Xiong LZ (2009) Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol Plant 2: 73-83
Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, hva1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110: 249-257
Zago E, Morsa S, Dat JF, Alard P, Ferrarini A, Inze D, Delledonne M, Van Breusegem F (2006) Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. Plant Physiol. 141: 404-411


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 黃介正,2001,〈美國政策研究智庫之特質與我應有之認識〉,《國家政策論壇》,第1卷,第10期,頁111-114。
2. 吳英明,1996,〈都市需要智庫-談政策智庫這都市發展〉,《研考雙月刊》,第20卷,第6期,頁51-52。
3. 【51】 陳振川、詹穎雯,「飛灰與無飛灰混凝土之強度與變形」,中國土木水利工程學刊第一卷第一期,第43-57頁,民國七十八年。
4. 【25】 賴正義,「高飛灰量混凝土性質」,台電工程月刊,第551期,民國八十三年。
5. 【27】 陳振川,「飛灰與爐石混凝土性質與其工程應用」,結構工程,第二卷,第四期,第87-94頁,民國七十六年。
6. 官有垣,1999,〈非營利公共政策研究組織(智庫)與社會福利政策研究〉,《社區發展季刊》,第58期,頁13-29。
7. 古明章,2009,〈智庫功能與綠營發展〉,《中國評論》,第141期,頁27-31。
8. 【24】 宋佩瑄,「矽灰在混凝土工程上之發展與應用」,結構工程,第113-120頁,民國七十七年。
9. 陳啟迪,1989,〈智庫與美國外交政策〉,《美國月刊》,第3卷,第11期,頁32-44。
10. 孫繼中,2001,〈淺談智庫〉,《研習論壇》,第3期,頁21-26。
11. 林碧炤,1993,〈開放社會與現代智庫〉,《問題與研究》,第32卷,第5期,頁1-10。
12. 【49】 林仁益、沈永年、黃兆龍,「Si NMR 解析水灰比、養護溫度與水泥漿體水化行為之相關性」,中國土木水利工程學刊第三卷第三期,第255-265頁,民國八十年。
13. 【1】 施漢章,「濕性腐蝕的一般形態及其有關原理」,材料科學第12卷,第54~63頁。
14. 蕭乃沂、黃東益、陳敦源、羅晉,2007,〈數位治理的實踐-「國家政策網路智庫」初評與前瞻〉,《研考雙月刊》,第43卷,第10期,頁81-85。
15. 鄭錫鍇 ,1996,〈我國行政部門對學術知識應用之策略及探討-以行政院研考會職掌爲例說明〉,《研考雙月刊》,第21卷,第1期,頁72-83。
 
系統版面圖檔 系統版面圖檔