(34.237.124.210) 您好!臺灣時間:2021/03/02 06:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林詩翔
研究生(外文):Shih-Hsiang Lin
論文名稱:利用前足機構設計達成二足機器人直腿型行走控制
論文名稱(外文):Straight Legged Walking Control of Biped Robot withForefoot Mechanism
指導教授:江昭皚江昭皚引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生物產業機電工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:77
中文關鍵詞:二足機器人人型機器人步態規劃零力矩點運動學
外文關鍵詞:Biped RobotHumanoid RobotGait Pattern GenerationZero Moment PointKinematics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二足機器人多關節的設計使得二足機器人有很好的障礙處理能力。然而二足機器人高自由度的多連桿機構,造成二足機器人步行上平衡的困難。因此,二足機器人的步態設計一直是二足機器人動態步行的一個重要課題。
本研究主要目的在於利用前足的機構設計來達成二足機器人直腿型的步行。在此研究之中,利用Pro/ENGINEER 4.0設計一個包含前足機構的半身二足機器人。此機器人包含十二個自由度。利用順向運動學將二足機器人建立出一個多連桿的運動模型。利用人體步行時的關節角度作為機器人直腿型步態週期的參照,以進一步降低二足機器人逆向運動學解析時的自由度。此外使用零力矩點(Zero Moment Point, ZMP)的概念判定二足機器人的平衡狀態。最後達成二足機器人動態步型的平衡控制,以及達成利用前足的機構的二足機器人直腿型的步行。


Comparing to other kinds of robot, biped robot has the advantage of obstacle crossing based on its multiple linkages design. However, multiple linkages design which contains many degrees of freedom increases the difficulty of balance control during dynamic walking. To solve the problem of balance control, the gait design has become an important topic to the dynamic walking of biped robot.
The main purpose of this study is to design a straight lagged walking control for biped robot based on forefoot mechanism. In this study, a biped robot which equipped a pair of forefoot mechanisms is designed by using Pro/ENGINEER 4.0. This robot contains 12 degrees of freedom. The robot control model is built by forward kinematic method. The zero moment point (ZMP) trajectory design is used as a main reference for robot dynamic walking, and also as a criterion of robot balance. Moreover, the joints angle of human gait is used to make a sub reference of robot straight lagged walking. The joints angle data can also decrease the calculation loading of robot inverse kinematic model. Finally, a straight lagged walking of biped robot can be implemented by using forefoot mechanism.


目 錄
===============

口詴委員審定書
誌謝
中文摘要
英文摘要
目錄
圖目錄
表目錄

第一章 前言
1.1 研究背景
1.2 研究目的
1.3 論文整體架構
第二章 文獻探討
2.1 人體動作分析
2.2 步態運作原理
2.3 靜態平衡策略
2.4 動態平衡策略
2.5 零力矩點控制(Zero-moment point, ZMP)
2.6 軌跡規劃
2.7 直腿型步態模型
2.8 前足關節步態模型
第三章 材料與方法
3.1 步態資料處理
3.2 二足機器人步態週期各關鍵階段與關鍵點界定
3.3 順向運動學(Forward Kinematics)
3.4 二足機器人設計
3.5 二足機器人前足機構設計
3.6 二足機器人模型建立
3.7 二足機器人步態控制理論
3.8 零力矩點計算方法
3.9 零力矩點軌跡規劃
第四章 結果與討論
4.1 二足機器人順向運動學模擬
4.2 二足機器人步態週期關節角度模擬
4.3 二足機器人零力矩點計算
第五章 結論與未來工作
5.1 結論
5.2 未來工作
參考文獻

[1]Albert, A. and W. Gerth. 2003. Analytic path planning algorithms for bipedal robots without a trunk. Journal of Intelligent and Robotic Systems 36: 109–127.
[2]Bresler, B. and J. P. Frankel. 1950. The forces and moments in the leg during level walking. Transection of the ASME 72(27): 25-35.
[3]Contini, R., R. Drillis, and M. Bluestein. 1963. Determination of body segment parameters. Human Factors 5(5): 493-504.
[4]Craig, J. J. 2005. Introduction to robotics mechanics and control. 3rd ed., 75, Person Prentice Hall.
[5]Denavit, J. and R. S. Hartenberg. 1955. A kinematic notation for lower-pair mechanisms based on matrices. Journal of Applied Mechanics 22: 215-221.
[6]D-Med Inc.. 2009. Lower limb biomechabics: the gait cycle, USA: D-Med Inc. Available at: www.d-med.com. Accessed 15 February 2009.
[7]Erbatur, K., A. Okazaki, K. Obiya, T. Takahashi and A. Kawamura. 2002. A study on the zero moment point measurement for biped walking robots. 7th International Workshop on Advanced Motion Control, 431-436.
[8]Fu, K.S., R. C. Gonzalez and C. S. G. Lee. 1987. Robotics:Control, sensing, vision, and intelligence, 40-41, Mc Grow Hill.
[9]Gorce, P., F. El Hafi and J. Coronado. 2001. Dynamic control of walking cycle with initiation process for humanoid robot, Journal of Intelligent Robotic Systems 31: 321–337.
[10]Guihard, M. and P. Gorce. 2004. Biorobotic foot model applied to BIPMAN robot. IEEE International Conference on Systems, Man and Cybernetics 7: 6491-6496.
[11]Honda. 1986. History of humanoid E0(1986). Japan: Honda Motor Co. Available at: world.honda.com. Accessed 15 February 2009.
[12]Honda. 2005. Honda Debuts New ASIMO. Japan: Honda Motor Co. Available at: world.honda.com. Accessed 15 February 2009.
[13]Honda. 2007. Honda develops intelligence technologies enabling multiple ASIMO robots to work together in coordination. Japan: Honda Motor Co. Available at: world.honda.com. Accessed 15 February 2009.
[14]Hemami, H., F. Weimer, and S. Koozekanani. 1973. Some aspects of the inverted pendulum problem for modeling of locomotion systems. IEEE Transactions on Automatic Control 18(6): 658-661.
[15]Hirai, K., M. Hirose, Y. Haikawa, and T. Takenaka. 1998. The development of Honda humanoid robot. IEEE International Conference on Robotics and Automation, 2, 1321-1326.
[16]Huang, Q., K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and K. Tanie. 2001. Planning walking patterns for a biped robot. IEEE Transactions on Robotics and Automation 17(3): 280-289.
[17]Ijspeert, A.J., J. Nakanishi, and S. Schaal. 2002. Movement imitation with nonlinear dynamical systems in humanoid robots. IEEE International Conference on Robotics and Automation, 2, 1398-1403.
[18]Inman, V. T. E. and J. B. Saunders. 1953. The major determinants in normal and pathological gait. Journal of Bone Joint Surgery 35A: 543-558.
[19]Kajita, S., F. Kanehiro, K. Kaneko, K. Fujiwara, K. Yokoi, and H. Hirukawa. 2002. A realtime pattern generator for biped walking. IEEE International Conference on Robotics and Automation, 1, 31-37
[20]Kurazume, R., T. Hasegawa, and K. Yoneda. 2003.The sway compensation trajectory of a biped robot. IEEE International Conference on Robotics and Automation, 925-931.
[21]Kurazume, R., S. Tanaka, M. Yamashita, T. Hasegawa, K. Yoneda. 2005. Straight legged walking of a biped robot. IEEE/RSJ International Conference on Intelligent Robots and Systems, 337-343.
[22]Lee, B. J., D. Stonier, Y. D. Kim, J. K. Yoo, and J. H. Kim. 2007. Modifiable walking pattern generation using real-time ZMP manipulation for humanoid robots. IEEE/RSJ International Conference on Intelligent Robots and Systems, 4221-4226.
[23]Lee, B. J., D. Stonier, Y. D. Kim, J. K. Yoo, and J. H. Kim. 2008. Modifiable walking pattern of a humanoid robot by using allowable ZMP variation. IEEE Transactions on Robotics 24(4): 917-925.
[24]Lim H., Y. Kaneshima, and A. Takanishi. 2002. Online Walking pattern generation for biped humanoid with trunk. IEEE International Conference on Robotics and Automation, 3111-3116.
[25]Lim, H. and A. Takanishi. 2005. Compensatory motion control for a biped walking robot. Robotica 23: 1-11.
[26]McGeer, T. 1990. Passive dynamic walking. International Journal of Robotics Research 9(2): 62–82.
[27]McGeer, T. 1990. Passive walking with knees. IEEE International Conference on Robotics and Automation, 3, 1640-1645.
[28]Muybridge, E. 1901.The human figure in motion: an electro-photographic investigation of consecutive phases of muscular actions: Chapman & Hall.
[29]Ogura, Y., H. O. Lim, and A. Takanishi. 2003. Stretch walking pattern generation for a biped humanoid robot. IEEE/RSJ International Conference on Intelligent Robots and Systems, 1, 352-357.
[30]Ogura, Y., T. Kataoka, K. Shimomura, H. Lim, and A. Takanishi. 2004. A novel method of biped walking pattern generation with predetermined knee joint motion. IEEE/RAJ International Conference on Intelligent Robots and Systems, 2831-2836.
[31]Ogura, Y., K. Shimomura, A. Kondo, A. Morishima, T. Okubo, S. Momoki, H. Lim, and A. Takanishi. 2006. Human-like walking with knee stretched, heel-contact and toe-off motion by a humanoid robot. IEEE/RSJ International Conference on Intelligent Robots and Systems, 3976-3981.
[32]Orthoteer. 2005. Phase of gait cycle. U.K.: Orthoteer. Available at: www.orthoteers.org. Accessed 15 February 2009.
[33]Sakagami, Y., R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, K. Fujimura. 2002 The intelligent ASIMO: system overview and integration. IEEE/RSJ International Conference on Intelligent Robots and System 3: 2478-2483.
[34]Sudarsky L. 1990. Geriatrics: Gait Disorders in the Elderly. The New England Journal of Medicine 20: 1441-1445.
[35]Sugihara, T., Y. Nakamura, and H.Inoue. 2002. Real-time humanoid motion generation through ZMP manipulation based on inverted pendulum control. IEEE International Conference on Robotics and Automation, 2, 1404-1409.
[36]Vukobratovic, M. and D. Juricic. 1969. Contribution to the synthesis of biped gait. IEEE Transaction on BioMedical Engineering BME-16(1): 1-6.
[37]Vukobratovic, M. and B. Borovac. 2004. Zero moment point-thirty-five years of its life. International Journal of Humanoid Robotics 1(1): 157–173.
[38]Whittle, M. W. 2007. Gait analysis-An introduction. 4rd ed., 52, Butterworth Heinemann.
[39]Yamaguchi, J.I., A. Takanishi, and I. Kato. 1993. Development of a biped walking robot compensating for three-axis moment by trunk motion. IEEE/RSJ International Conference on Intelligent Robots and Systems, 1, 561-566.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔