(3.220.231.235) 您好!臺灣時間:2021/03/07 10:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡銘嘉
研究生(外文):Ming-Chia Tsai
論文名稱:適用於高速超音波成像系統的低複雜度可適性波束成像器引擎
論文名稱(外文):Low-Complexity Adaptive Beamformer Engine in High Frame Rate Ultrasound Imaging System
指導教授:吳安宇吳安宇引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:104
中文關鍵詞:超音波波束成像器數位訊號處理多核心系統
外文關鍵詞:UltrasoundBeamformerDSPMulti-core system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:379
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Medical imaging system is to provide a visual representation of anatomical structures, blood flow velocity, and other diagnostic information. Currently, the mainly three applications in ultrasound system are B-mode image processing, color Doppler, or spectral Doppler. B mode image represents the power of the received echo. The Doppler mode is used for blood flow estimation and cardiac muscle observation. In this thesis, we focus on B mode imaging. Since the natural characteristics of the propagation wave, beamforming thus play a vital role in array signal processing, whose functionality is to focus the received echoes. Beamforming can be performed by real aperture and synthetic aperture with corresponding ways of delay calculation to focus echoes. The oldest but the most popular method is to delay and sum for received echoes alignment, which we adopt in this work. Real aperture use full array, which consumes more power and computation complexity to form an image. Synthetic aperture uses less hardware overhead in trade of image quality. High frame rate imaging system (HFR) is just composed of synthetic transmit aperture and broad transmit beams (plane wave, defocused beams, and diffraction beams).
The techniques of digital signal processing can overcome this problem by weighting adjustment on channels. Methods of constant weighting are often used to beam shaping; however, adaptive methods are also applied to medical signal processing recently. For example, CFMVDR aims to enhance terrible image quality in HFR system. The problem is the high complexity of weighing calculation.
In this thesis, we propose a new method of low complexity adaptive imaging. This method has little hardware overhead without performance loss. We have built the proposed model on Matlab to test the efficacy by both synthetic data using Field II and clinical data of breast from female patients. Still, we implement the proposed adaptive beamforming on CUDA (Compute Unified Device Architecture, new platform of multi-core computing) and propose some methods of modification. In the assistance of multi-core platform, the proposed adaptive imaging can be proven to approach the requirement of real time application, which is ever published. Through this thesis, we offer the new concepts combined with adaptive algorithms and implementations for future research in this domain.




List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
1.1 Overview of Ultrasonic Imaging Systems 1
1.2 Research Topics and Main Contributions 10
1.3 Thesis Organization 17
Chapter 2 High Frame Rate (HFR) Imaging Systems 18
2.1 Principles of Medical Ultrasound 18
2.2 High Frame Rate Imaging System 32
2.3 Summary 35
Chapter 3 Review of Adaptive Beamforming Algorithms 36
3.1 Coherence Factor (CF) and Generalized CF (GCF) 38
3.2 Minimum Variance Directionless Responese (MVDR) 43
3.3 CFMVDR in HFR System 47
3.4 Summary 51
Chapter 4 Proposed Adaptive Algorithm in HFR System 53
4.1 Algorithm Description 53
4.2 Complexity Analysis 58
4.3 Simulation Results 60
4.4 Experimental Investigation 64
4.5 Temporal Smoothing Analysis 70
4.6 Summary 80
Chapter 5 Implementation on Multi-core System 81
5.1 Programming Model 81
5.2 Computation Units and Memory Hierarchy 82
5.3 GPU Specification of GTX 260 88
5.4 Parallelism Analysis 89
5.5 Bottleneck Analysis 92
5.6 Emulation Outcome 96
5.7 Summary 97
Chapter 6 Conclusions 99
6.1 Main Contribution 99
6.2 Future Direction 99
Reference 101



[1] J. Y. Lu, H. Zou, and J. F. Greenleaf, “Biomedical ultrasound beam forming,” Ultrasound Med. Biol., vol. 20, pp. 403-28, 1994.
[2] VisualSonics, http://www.visualsonics.com/.
[3] GE Medical Systems, http://www.gemedicalsystems.com/rad/us/.
[4] D. H. Johnson and D. E. Dudgeon, Array signal processing : concepts and techniques. Englewood Cliffs, NJ: Prentice Hall, 1993..
[5] P. C. Li, “Principles of Medical Ultrasound,” Class Notes, National Taiwan University, 2006.
[6] M. O''Donnell and L. J. Thomas, “Efficient synthetic aperture imaging from a circular aperture with possible application to catheter-based imaging,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., 39(3):366-380, 1992.
[7] Sverre Holm and Hongxia Yao, “Improved frame rate with synthetic transmit aperture imaging using prefocused subapertures,” IEEE Ultrason. Symp., Oct. 1997.
[8] K. W. Hollman, K. W. Rigby, and M. O''Donnell, “Coherence factor of speckle from a multi-row probe,” IEEE Ultrason. Symp., 1999, pp. 1257-1260.
[9] P.-C. Li and M.-L. Li, "Adaptive imaging using the generalized coherence factor," IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 50, pp. 128-141, 2003.
[10] S.-L. Wang, C.-H. Chang, H.-C. Yang, Y.-H. Chou, and P.-C. Li, “Performance Evaluation of Coherence-Based Adaptive Imaging Using Clinical Breast Data,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 54, pp. 1669-1679, 2007.
[11] J. A. Jensen, “Field: a program for simulating ultrasound systems,” Med. Biol. Eng. Comp., vol. 4, suppl. 1, pt. 1; Tenth Nordic-Baltic Conference on Biomedical Imaging, pp. 351-353, 1996.
[12] M. Karaman, L. Pai-Chi, and M. O''Donnell, “Synthetic aperture imaging for small scale systems,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 42, pp. 429-442, 1995.
[13] J.-y. Lu, J. Cheng, and J. Wang, “High frame rate imaging system for limited diffraction array beam imaging with square-wave aperture weightings high frame rate imaging system for limited diffraction array beam imaging with square-wave aperture weightings,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 53, pp. 1796-1812, 2006.
[14] F. Vignon and M. R. Burcher, “Capon beamforming in medical ultrasound imaging with focused beams,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 55, pp. 619-628, 2008.
[15] J. Li, P. Stoica, and Z. Wang, “On robust Capon beamforming and diagonal loading,” IEEE Trans. Signal Processing, vol. 51,pp. 1702–1715, July 2003.
[16] J.-Y. Lu, “2D and 3D high frame rate imaging with limited diffraction beams,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 44, pp. 839-856, 1997.
[17] J. F. Synnevag, A. Austeng, and S. Holm, “Adaptive beamforming applied to medical ultrasound imaging,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 54, pp. 1606-1613, Aug 2007.
[18] T. Hergum, T. Bjastad, K. Kristoffersen, and H. Torp, “Parallel beamforming using synthetic transmit beams,” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol. 54, pp. 271-280, 2007.
[19] Babak Mohammadzadeh Asl, Ali Mahloojifar, “Minimum variance beamforming combined with adaptive coherence weighting applied to medical ultrasound Imaging,” IEEE Trans. on Ultrason., Ferroelectr., Freq. Control vol. 56, no. 9, September 2009
[20] S .-L. Wang and P.-C. Li, “High frame rate adaptive imaging using coherence factor weighting and the MVDR method,” in Proc. IEEE Ultras. Symp., Nov. 2008, pp. 1175–1178
[21] Dimitris G. Manolakis, Vinay K. Ingle, and Stephen M. Kogon, Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing1th,2000 McGraw –Hill
[22] Simon Haykin , Adaptive Filter Theory 4th,2002,Prentice Hall
[23] T.-J. Shan, M. Wax, and T. Kailath, “On spatial smoothing for direction-of-arrival estimation of coherent signals,” IEEE Trans. Acoust. Speech Signal Processing, vol. 33, no. 4, pp. 806–811,Aug. 1985
[24] NVIDIA CUDA Programming Guide 2.3
[25] CUDA Technical Training vol. I
[26] CUDA, http://www.smooth.url.tw/wiki/doku.php
[27] CUDA, http://sites.google.com/site/cudaiap2009/materials-1/cuda-textbook
[28] CUDA Tutorial, http://llpanorama.wordpress.com/cuda-tutorial/
[29] A. Austeng and S. Holm, “Sparse 2-D Arrays for 3-D Phased Array Imaging—Design Methods”, IEEE Trans. on Ultrason., Ferroelectr., Freq. Contr., vol. 49, no. 8, pp.1073-1085, August 2002
[30] S. W. Smith, H. G. Pavy and O. T. von Ramm, “High-Speed Ultrasound Volumetric Imaging System-Part I: Transducer Design and Beam Steering,” IEEE Trans. on Ultrason., Ferroelectr., Freq. Contr., vol. 38, no. 2, pp.100-108, March 1991.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔