(54.236.58.220) 您好!臺灣時間:2021/03/05 06:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:施宏隆
研究生(外文):Hung-Lung Shih
論文名稱:用於伽利略衛星定位系統的窄頻低雜訊放大器和900MHz的信封消除還原功率放大器
論文名稱(外文):A Narrowband LNA for Galileo System and 900MHz Envelope Elimination and Restoration Power Amplifier
指導教授:陳怡然陳怡然引用關係
指導教授(外文):Yi-Jan Emery Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:117
中文關鍵詞:無線通信伽利略衛星定位系統低雜訊放大器CDMAE類功率放大器信封消除和還原系統
外文關鍵詞:wireless communication systemGalileo satellite navigation systemLNACDMAClass-E power amplifierEER
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要可分為二個部分,第一個部分是工作於伽利略衛星定位的低雜訊放大器。在這部分我們主要是希望可以把窄頻帶通濾波器與低雜訊放大器結合,使得此放大器有窄頻帶通濾波器的頻率響應,並且有不差的雜訊指數、增益之表現。最後我們將用0.18μm CMOS 的製程來實現。
第二部分是工作於900MHz CDMA IS-95 的E類功率放大器和信封消除和還原系統。在現代的通訊系統中,我們通常希望可以長時間使用,並且有良好的收信品質。一般而言,切換式的功率放大器有較好的效率表現,但是他有較差線性度,所以會影響到通信品質。因此我們可以外加其他的電路來提高線性度,而信封消除和還原系統是其中的一種方式。最後我們將得到一個高效率和高線性度的功率放大器。


In first part of this thesis, a LNA was designed for Galileo satellite navigation system. The LNA combines with a narrowband band-pass filter. The LNA will have narrowband band-pass filter response, so we can reduce some components of Galileo system receiver. The narrowband LNA has good noise and gain. We implement the narrowband LNA in 0.18-μm CMOS process.
In the second part, we designed a Class-E power amplifier in an envelope elimination and restoration system (EER) at 900MHz CDMA IS-95. In the modern communication systems, we hope good quality and long time of communication. Generally, the switch mode power amplifier has good efficiency, but this amplifier has poor linearity. Hence, we can improve linearity of this amplifier by EER system. Finally, we can get a good efficiency and linearity performance.


Table of Contents........................................I
List of Figure.........................................III
List of Table...........................................IX
1.INTRODUCTION...........................................1
1.1 Motivation.........................................1
1.2 Framework of Thesis................................2
2.GALILEO NARROWBAND LNA.................................5
2.1 Galileo and GPS overview...........................5
2.2 Narrowband LNA Technique survey...................11
2.3 Narrowband LNA Design.............................20
2.3.1 Low Pass Notch Filter Architecture and Q-Enhanced Technique...............................................21
2.3.2 Narrowb and LNA Design.........................29
2.3.3 Noise Analysis.................................37
2.4 Measurement Result................................46
2.5 Summary...........................................51
3.HIGH EFFICIENCY CLASS-E POWER AMPLIFIER...............53
3.1 Switching Mode RF Power Amplifier.................53
3.2 The Class-E Technique.............................58
3.3 Class-E Power Amplifier Design....................70
3.4 Measurement Result................................75
3.5 Summary...........................................79
4. 900MHz ENVELOPE ELIMINATION and RESORATION PA........81
4.1 Induction.........................................81
4.2 RRE Technique.....................................87
4.3 EER Technique Survey..............................89
4.4 900MHz EER system design..........................95
4.5 Measurement Result................................98
4.6 Summary..........................................106
5. CONCLUSION..........................................109
REFFERENCE.............................................112


[1] Razavi, B. “RF Microelectronics,” Upper Saddle River, NJ: Prentice Hall. 1998.
[2] Pozar, D. M. “Microwave Engineering (third edition),” NJ: John Wiley & Sons. 2005.
[3] GNSS Technique http://www.cospas-sarsat.org/index.php?lang=en.
[4] Chastellain, F., C. Botteron, G. Waelchli, G. Zamuner, D. Manetti, and P. A. Farine “A Galileo E1b,c RF Front-End Optimized for Narrowband Interferers Mitigation,” Published in GNSS 19th International Technical Meeting of the Satellite Division, pp.1069-1075, Sep. 2006.
[5] Lee, T. H. “The Design of CMOS Radio-Frequency Integrated Circuit (second edition),” UK: Cambridge University Press, 2004.
[6] Kholy, M. M. El. “Ultra Low Power Narrow Band LNA,” IEEE 2nd International Design and Test Workshop, pp. 38-42, Dec. 2007.
[7] Samavati, H., H. R. Rategh, and T. H. Lee “A 5-GHz CMOS Wireless LNA Receiver Front End,” IEEE Journal of Solid- Circuits, Vol. 35, No. 5, pp. 765-772, 2000.
[8] Darabi, H. “A Block Filtering Technique for SAW-Less Wireless Receivers,” IEEE Journal of Solid- Circuits, Vol. 42, No. 12, pp. 2766-2773, 2007.
[9] Sedra, A. S. and K. C. Smith “Microelectronic Circuits (fifth edition),” New York: Oxford University Press, 2004.
[10] Shaeffer, D. K. and T. H. Lee “A 1.5V 1.5GHz CMOS Low Noise Amplifier,” IEEE Journal of Solid- Circuits, Vol. 32, No. 5, pp. 745-759, 1997.
[11] Mattamana, A., H. Axtell, C. Cerny, G. Creech, T. James, I. Mbuko, R. Neidhard, P. Orlando, V. J. Patel, D. Selke, and T. Quach “Narrow and Broadband Low-noise Amplifiers at Higher Frequency Using FDSOI CMOS Technology,” IEEE SiRF , pp. 32-36, Jan. 2006.
[12] Yosub Moon, Sanghyun Cha, Gyusuck Kim, Kyoungseok Park, Sunjun Ko, Heonchul Park, Jubong Park, Jaeheon Lee “A 26mW Dual-mode RF Receiver for GPS/Galileo with L1/L1F and L5/E5a Bands,” IEEE International SoC Design Conference, Vol. 1, pp. 421-424, 2008.
[13] Detratti, M., Lopez, E., Perez, E., Palacio, R., Lobeira, M., “Dual-Band RF Receiver Chip-Set for Galileo/GPS application,” IEEE Position, Location and Navigation Symposium, pp. 851-859, May, 2008.
[14] Alvarado, U., Rodriguez, N., Mendizabal, J., Berenguer, R., Bistue, G., “A Dual-Gain ESD-protected LNA with Integrated Antenna Sensor for a Combined Galileo and GPS front-end,” IEEE Silicon Monolithic Integrated Circuits of RF system, pp. 99-102, Jan. 2007.
[15] Torre, V.D., Conta, M., Chokkalingam, R., Cusmai, G., Rossi, P., Svelto, F., “A 20mW 3.24 mm2 Fully Integrated GPS Radio for Location Based Services,” IEEE Journal of Solid- Circuits, Vol. 42, No. 3, pp. 602-612, 2007.
[16] Svelto, F., Deantoni, S., Montagna, G., Castello, R., “Implementation of a CMOS LNA Plus Mixer for GPS Application with No External Components,” IEEE Transaction on VLSI, Vol. 9, No. 1, pp. 100-104, 2001.
[17] Abdelrahim, T.A., Elesseily, T., Ahmed Saad Abdou, Sharaf, K.M.W., “A 12-mW Fully Integrated Low-IF dual-band GPS receiver on 0.13-μm CMOS,” IEEE ISCAS, pp. 3034-3038, May 2007.
[18] Grebennikov, A. and N. O. Sokal “Switchmode RF Power Amplifier,” MA: Newnes, 2007.
[19] Cripps, S. C. “RF Power Amplifier for Wireless Communication,” Boston: Artech House microwave library, 1999.
[20] Sokal, N. O. and A. D. Sokal “Class E-A New Class of High-Efficiency Tuned Single Ended Switching Power Amplifier,” IEEE Journal of Solid- Circuits, Vol. 10, No. 3, pp. 168-176, 1975.
[21] Raab, F. H. “Idealized Operation of the Class-E Tuned Power Amplifier,” IEEE Trans. Circuits and System. Vol. 24, No. 12, pp. 725-735, 1977
[22] Mader, T. B., E. W. Bryetron, M. Marcovic, M. Forman, and Z. Popovic “Switched-Mode High- Efficiency Microwave Power Amplifier in a Free-Space Power-Combiner Array,” IEEE Trans. MTT, Vol. 46, No. 10, pp. 1371-1398, 1998.
[23] Sokal, N. O. “Class-E RF Power Amplifiers,” QEX. Jan/Feb, pp. 9-20, 2001.
[24]NEC data sheet http://www.dataseetcatalog.org/datasheet/nec/NE651R479A
[25] Donald, Y.C., J. D. Lie, P. P. Lee, A.H. Yang, J. F. Rowlando, F. Wang and D. Kimball “Monolithic Class E SiGe Power Amplifier Design with Wideband High-Efficiency and Linearity,” IEEE VLSI Design, Automation and Test, International Symposium, pp. 1-4, April 2006.
[26] Thian, M., M. Xiao, and P. Gardner “Digital Baseband Predistortion Based Linearized Broadband Inverse Class-E Power Amplifier,” IEEE Trans. MTT, Vol. 57, No. 2, pp. 323-328, 2009.
[27] Qin, Y., S. Gao, A. Sambell, and E. Koroliewicz “Design of Low-Cost Broadband Class-E Power Amplifier Using Low-Voltage Supply,” Microwave and Optical Technology Lett., Vol. 44, No. 1, pp. 103-106, 2005.
[28] Cripps, S. C. “Advanced Techniques in RF Power Amplifier Design,” Boston: Artech House microwave library, 2002.
[29] Kahn, L. R. “Single Sideband Transmission by Envelope Elimination and Restoration,” Prpc. IRE, Vol.40, pp. 803-806, 1952.
[30] Chireix, H. “High Power Outphasing Modulation,” Proc. IRE, Vol.23, No.11, pp.1370-1392, 1935.
[31] Raab, F. H. and D. J. Rapp “High efficiency SSB Transmitter Based Upon EER,” Proc. 6th Intl. conf. on HF Radio Systems and Techniques, York UK, pp.21-25, July 1994.
[32] Chiba, K., T. Nojima, and T. Shigeru “Linearised Saturation Amplifier with Bidirectional Control for Digital Mobile Radio,” Proc. IEEE Global Telecom Conf., pp. 1958-1962, Dec. 1990.
[33] Wang, Y. “An Improved Kahn Transmitter Architecture Based on Delta-Sigma Modulator,” IEEE MTT-S, Vol. 2, No.6, pp. 1327-1330, 2003.
[34] Dupuy, A., Y. Ghung, E. Wang, and T. Itoh. “Digital Pulse Width Modulated (P.W.M) Microwave Signal Using A High Efficiency Class-E amplifier,” IEEE APMC., 2003
[35] Choi, J., J. Yim, J. Yang, J. Kim, J. Cha, D. Kang, D. Kim, and B. Kim “A delta-sigma-digitized polar RF transmitter,” IEEE Trans. Microwave Theory and Tech., Vol. 55, No. 12, pp. 2679-2690, 2007.
[36] Chen, J. H., K. U. Yen, and J. S. Kenney “An Envelope Elimination and Restoration Power Amplifier Using a CMOS Dynamic Power Supply Circuit,” IEEE MTT-S Int. Microw. Symp. Dig., Vol. 3, No. 6, pp. 1519-1522, 2004.
[37] Chen, C.T., C. J. Chen, T.S. Horng, J. K. Jau, and J.Y. Li “Design and Linearization of Class-E Power Amplifier for Non-constant Envelope Modulation,” IEEE Trans. Microwave Theory and Tech., Vol. 57, No. 4, pp. 956-967, 2009.
[38] Kao, Y.H., Shi, W.K., “An Ultra-linear wideband Feedforward Power Amplifier for Digital Communication Systems,” IEEE APMC., 2001.
[39] Wang, F., Kimball, D., Popp, J., Yang, A., Lie, D.Y.C., Asbeck, P., and Larson. L., “Wideband Envelope and Restoration Power Amplifier with High Efficiency Wideband Envelope Amplifier for WLAN 802.11g Applications,” IEEE MTT-S., pp. 12-17, June 2005.
[40] Yang, H.S., Shih, H.L., Chen, J.H., and Chen, Y.J.E., “A Pulse Modulated Polar Transmitter for CDMA Handsets,” 2010 IEEE MTT-S International Microwave Symposium, Anaheim, California, May 2010.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 辛達謨,「法肯豪森將軍回憶中的蔣委員長與中國」,《傳記文學》,第十九卷第五期。
2. 辛達謨,「法肯豪森將軍回憶中的蔣委員長與中國(二)」,《傳記文學》,第十九卷第六期。
3. 王洽南,「德國顧問在南京時期工作的回憶」,《傳記文學》,第二十七卷第四期。
4. 辛達謨,「法爾根豪森將軍回憶中的蔣委員長與中國(一九三四-一九三八)(二)」,《傳記文學》,第十九卷第六期。
5. 辛達謨,「法肯豪森將軍回憶中的蔣委員長與中國(三)」,《傳記文學》,第二十一卷第一期。
6. 辛達謨,「南京國民政府時期中德外交關係之研究(民國十七年至二十二年)」,《近代中國》,第三十九期。
7. 辛達謨,「南京國民政府時期德國顧問之貢獻」,《近代中國》,第三十九期。
8. 辛達謨,「南京國民政府時期德國顧問之貢獻(下)」,《近代中國》,第四十五期。
9. 辛達謨,「國父對德外交政策之研究」,《近代中國》,第三十六期。
10. 辛達謨,「德國外交檔案的中德關係(二)-民國十七年(1928)至廿七(1938)」,《傳記文學》,第四十一卷第五期。
11. 辛達謨,「德國外交檔案的中德關係(三)-民國十七年(1928)至廿七年(1938)」,《傳記文學》,第四十一卷第六期。
12. 辛達謨,「德國外交檔案的中德關係(四)-民國十七年(1928)至廿七年(1938)」,《傳記文學》,第四十二卷第二期。
13. 辛達謨,「德國外交檔案的中德關係(五)-民國十七年(1928)至廿七年(1938)」,《傳記文學》,第四十二卷第三期。
14. 辛達謨,「德國外交檔案的中德關係(六)-民國十七年(1928)至廿七年(1938)」, 《傳記文學》,第四十二卷第五期。
15. 辛達謨,「德國外交檔案的中德關係-民國十七年(1928)至廿七(1938)」,《傳記文學》,第四十一卷第四期。
 
系統版面圖檔 系統版面圖檔