(3.238.186.43) 您好!臺灣時間:2021/02/25 02:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐雅芸
研究生(外文):Ya-Yun Hsu
論文名稱:應用於微波毫米波之寬頻與多頻段低雜訊放大器之研製
論文名稱(外文):Design of Wide/ Multi-band Low Noise Amplifiers for Microwave and Millimeter-wave Applications
指導教授:王暉
指導教授(外文):Huei Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:123
中文關鍵詞:微波毫米波單晶片(雙頻帶)低雜訊放大器多頻帶
外文關鍵詞:MMICUWB(dual-band)low noise amplifiermulti-band
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文之目的在於研究使用商用標準金氧半場效電晶體(CMOS)製程來設計可供單頻及多頻段使用之低雜訊放大器。低雜訊放大器常於無線通訊系統之接收端扮演了決定整個系統的雜訊指數之重要角色,在射頻電路中的地位不可或缺。近年來,使用CMOS製程研製單頻帶之低雜訊放大器的技術已漸趨成熟。然而隨著無線通訊頻帶的開放,未來單一行動通訊裝置勢必將需具備可支援多個不同頻帶之功能。因此本論文之研究重心便在於使用單一晶片實現寬頻抑或是多頻帶之低雜訊放大器。
首先實現的是一個使用TSMC 0.18μm CMOS製程所製作之2.4/ 5.2 GHz切換式雙頻帶低雜訊放大器。其於2.4 GHz的增益可達 8.8 dB,雜訊指數為3.4 dB;於5.2 GHz的增益為10.4 dB,雜訊指數為5.5 dB。此頻帶主要是應用於無線網路通訊的IEEE 802.11 a/b/g/n 頻段通訊,同時2.4 GHz亦屬ISM頻段,與更多的通訊設備更能相容。
其次是一個使用TSMC 0.18μm CMOS製程所製作之5.2~11.2 GHz低雜訊放大器。在此3-dB頻寬當中,最高的增益為13.9 dB,最低雜訊指數為4.9 dB。此頻帶可支援聯邦通訊協定 (FCC) 所認可之UWB (3.1 - 10.6 GHz) 頻段應用。
最後為一個使用TSMC 90nmLP CMOS製程所製作之24/77 GHz同時式雙頻帶低雜訊放大器。利用所提出的電路架構,可以實現任意雙頻帶的低雜訊放大器。

The purpose of this thesis is to develop single-band and multi-band low noise amplifiers employing commercial standard CMOS processes. The low noise amplifier in the receiver usually plays an important roles in determining the noise figure of the whole wireless communication system, and it is irreplaceable in RF circuits. Recently, techniques for designing single-band CMOS low noise amplifiers have been more and more mature. However, as more wireless communication frequency bands are released and approved, one single mobile device should support multi-band usages in the future. As a result, the researches of this thesis highly focus on designing wideband or multiband low noise amplifiers in one single chip.
First, an implementation of a 2.4/5.2 GHz switchable dual band low noise amplifier using TSMC 0.18μm CMOS process is presented. It achieves a small signal gain of 8.8 dB and noise figure of 3.4 dB in 2.4 GHz; on the other hand, it achieves a small signal gain of 10.4 dB and noise figure of 5.5 dB in 5.2 GHz. This is mainly for IEEE 802.11 a/b/g/n frequency applications in wireless network communication. Furthermore, the 2.4 GHz band also lies in the ISM (industrial, scientific and medical ) band applications.
Second, an implementation of a 5.2 - 11.2 GHz low noise amplifier using TSMC 0.18μm CMOS process is presented. It achieves the highest gain of 13.9 dB and the lowest noise figure of 4.9 dB in its 3-dB bandwidth. This frequency band supports the 3.1 - 10.6 GHz UWB (ultra-wideband) approved by the Federal Communications Commission (FCC).
Finally an implementation of a 24/77 GHz concurrent dual band low noise amplifier using TSMC 90nmLP CMOS process is presented. With the proposed circuit topology, dual-band LNAs operating at any two frequencies can be achieved.

口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 Motivation......................................................................................................1
1.2 Literature Survey............................................................................................2
1.2.1 Ultra-wideband Low Noise Amplifiers.................................................2
1.2.2 Dual-band Low Noise Amplifiers.........................................................5
1.3 Contributions .................................................................................................8
1.4 Thesis Organization......................................................................................10
Chapter 2 Basics of Wide-band and Multi-band Low Noise Amplifiers 11
2.1 Basics of Low Noise Amplifier 12
2.1.1 Microwave Amplifier Design 12
2.1.2 Noise. 14
2.2 Common Topologies for Wide-band LNAs 19
2.2.1 General Topologies..............................................................................19
2.2.2 Viewing the Cascode Topology as CS + CG.......................................21
2.2.3 Noise Canceling...................................................................................24
Chapter 3 Switchable Dual-band Low Noise Amplifier Design 27
3.1 Introduction 27
3.1.1 Go Wireless - Introduction to IEEE 802.11 a/b/g/n.............................27
3.1.2 Input broadband Impedance Matching................................................31
3.1.3 Dual Band System Topology...............................................................33
3.2 2.4/5.2 GHz Switchable Dual-band Low Noise Amplifier Design...............37
3.2.1 Device Topology..................................................................................37
3.2.2 Circuit Implementation........................................................................42
3.3 Experimental Results.....................................................................................44
3.3.1 Measurement Results...........................................................................44
3.3.2 Discussion............................................................................................51
3.4 Summary........................................................................................................61
Chapter 4 5.2-11.2 GHz Low Noise Amplifier Design...........................................62
4.1 Introduction...................................................................................................62
4.2 5.2-11.2 GHz Low Noise Amplifier Design..................................................63
4.2.1 Device Topology Selection..................................................................64
4.2.2 Circuit Implementation........................................................................66
4.3 Experimental Results.....................................................................................69
4.3.1 Measurement Results...........................................................................69
4.3.2 Discussion of the Coupling Effects Between Adjacent Inductors.....76
4.4 Summary........................................................................................................83
Chapter 5 Concurrent Dual-band Low Noise Amplifier Design..........................85
5.1 Introduction...................................................................................................85
5.1.1 Motivation...........................................................................................85
5.1.2 Input Matching....................................................................................86
5.1.3 Noise Matching....................................................................................88
5.1.4 Load Circuit, Output Matching, and Gain...........................................92
5.1.5 Dual Band Antenna..............................................................................93
5.2 Concurrent Dual-band Low Noise Amplifier Design....................................94
5.2.1 Device Topology..................................................................................94
5.2.2 Dual Bandpass Input and Output Matching........................................99
5.2.3 Dual Band Bypass.............................................................................101
5.2.4 Circuit Implementation......................................................................104
5.3 Experimental Results...................................................................................108
5.4 Summary......................................................................................................112
Chapter 6 Conclusions...........................................................................................114
REFERENCES.............................................................................................................116




[1]D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE Journal of Solid-State Circuits, vol. 32, no. 5, pp. 745 - 759, May 1997.
[2]S. Wu and B. Razavi, "A 900-MHz/1.8-GHz CMOS receiver for dual-band applications," IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 2178 - 2185, Dec. 1998.
[3]Y. Wang, J. S. Duster, and K. T. Kornegay, "Design of an ultra-wideband low noise amplifier in 0.13μm CMOS," in IEEE Int. Symp. on Circuits and Systems, vol. 5, July 2005, pp. 5067 - 5070.
[4]S. Chehrazi, A. Mirzaei, R. Bagheri, and A. A. Abidi, "A 6.5 GHz wideband CMOS low noise amplifier for multi-band use," in Proc. IEEE Custom Integrated Circuits Conf., Sept. 2005, pp. 801 - 804.
[5]R.-C. Liu, C.-S. Lin, K.-L. Deng, and H. Wang, "A 0.5-14-GHz 10.6-dB CMOS cascode distributed amplifier," in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2003, pp. 139 - 140.
[6]F. Zhang and P. Kinget, "Low power programmable-gain CMOS distributed LNA for ultra-wideband applications," in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2005, pp. 78 - 81.
[7]H. Knapp, D. Zoschg, T. Meister, K. Aufinger, S. Boguth, and L. Treitinger, "15 GHz wideband amplifier with 2.8 dB noise figure in SiGe bipolar technology," in Proc. IEEE Radio Frequency Integrated Circuits Symp., Jun. 2003, pp. 287 - 290.
[8]S. Andersson, C. Svensson, and O. Drugge, "Wideband LNA for a multistandard wireless receiver in 0.18μm process," in Proc. Eur. Solid-State Circuits Conf., Sep. 2003, pp. 655 - 658.
[9]R. Gharpurey, "A broadband low-noise front-end amplifier for ultra wideband in 0.13μm CMOS," in Proc. IEEE Custom Integrated Circuits Conf., Oct. 2004, pp. 605 - 608.
[10]A. Bevilacqua, and A. M. Niknejad, "An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receivers," in IEEE ISSCC Dig. Tech. Papers, Feb. 2004, pp. 382 - 383.
[11]C.-F. Liao, and S.-I. Liu, "A broadband noise-canceling CMOS LNA for 3.1-10.6-GHz UWB receivers," IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 329 - 339, Feb. 2007.
[12]K.-H. Chen et al., "An ultra-wide-band 0.4-10-GHz LNA in 0.18μm CMOS," IEEE Trans. Circuits Syst. II, vol. 54, no. 3, pp. 217 - 221, Mar. 2007.
[13]K.-J. Sun, Z.-M. Tsai, K.-Y. Lin, and H. Wang, "A noise optimization formulation for CMOS low-noise amplifiers with on-chip low-Q inductors," IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1554 - 1560, Apr. 2006.
[14]S. Shekhar, X. Li, and D. J. Allstot, "A CMOS 3.1-10.6 GHz UWB LNA employing stagger-compensated series peaking," in Proc. Eur. Solid-State Circuits Conf., Jun. 2006, pp. 1 - 4.
[15]J. Liu, G. Chen, and R. Zhang, "Design of a noise-canceling differential CMOS LNA for 3.1-10.6 GHz UWB receivers," in IEEE 8th Int. Conf. on ASIC, Oct. 2009, pp. 1169 - 1172.
[16]L.-H. Lu, H.-H. Hsieh, and Y.-S. Wang, "A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier," IEEE Microwave and Wireless Compon. Lett., vol. 15, no. 10, pp. 685 - 687, Oct. 2005.
[17]T. K. K. Tsang and M. N. El-Gamal, “Dual-band sub-1V CMOS LNA for 802.11 a/b WLNA applications,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 1, May 2003, pp. 217 – 220.
[18]V. K. Dao, B. G. Choi, and C. S. Park, “A dual-band CMOS RF front-end for 2.4/5.2 GHz applications,” in IEEE Radio Wireless Symp., Jan. 2007, pp. 145 – 148.
[19]H. Hashemi, and A. Hajimiri, "Concurrent multiband low-noise amplifiers - theory, design, and applications," IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 288 - 301, Jan. 2002.
[20]Z. Li, R. Quintal, and K. K. O, “A dual-band CMOS front-end with two gain modes for wireless LAN applications,” IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 2069 - 2073, Nov. 2004.
[21]F. Tzeng, A. Jahanian, and P. Heydari, "A multiband inductor-reuse CMOS low-noise amplifier," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 3, pp. 209 - 213, Mar. 2008.
[22]V. Jain, F. Tzeng, L. Zhou, and P. Heydari, "A single-chip dual-band 22-to-29GHz/77-to-81GHz BiCMOS transceiver for automotive radars," in IEEE Int. Solid-State Circuits Conf., Jan. 2009, pp. 308 - 310.
[23]S.-S. Yoo and H.-J. Yoo, “Optimization of switchable inductor and application to reconfigurable LNA with self-matched capacitor,” in Proc. Asia-Pacific Microw. Conf., Dec. 2007, pp. 1 - 4.
[24]C. Zhang, D. Huang, and D. Lou, "Optimization of cascode CMOS low noise amplifier using inter-stage matching network," in IEEE conf. on Electron Devices and Solid-State Circuits, Dec. 2003, pp. 465 - 468.
[25]F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, "Wide-band CMOS low-noise amplifier exploiting thermal noise canceling," IEEE Journal of Solid-State Circuits, vol. 39, no. 2, pp. 275 - 282, Feb. 2004.
[26]A. J. Scholten, H. J. Tromp, L. F. Tiemeijer, R. Van Langevelde, R. J. Havens, P. W. H. De Vreede, R. F. M. Roes, P. H. Woerlee, A. H. Montree, and D. B. M. Klaassen, "Accurate thermal noise modeling for deep-submicron CMOS," in Int. Electron Device Meeting Tech. Dig., Dec. 1999, pp. 155 - 158.
[27]W. Zhuo, S. Embabi, J. Pineda de Gyvez, and E. Sanchez-Sinencio, "Using capacitive cross-coupling technique in RF low noise amplifiers and down-conversion mixer design," in Proc. ESSCIRC, 2000, pp. 116 - 119.
[28]R. G. Meyer and A. K. Wong, “Blocking and desensitization in RF amplifiers,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 944 - 946, Aug. 1995.
[29]Y. C. Chen and C. N. Kuo, "A 6-10-GHz ultra-wideband tunable LNA," in IEEE Intl. Conf. on Circuits and Systems, May 2005, pp. 5099 - 5102
[30]K. Mandke, H. Nam, L. Yerramneni, and C. Zuniga, "The evolution of ultra wide band radio for wireless personal area networks," Summit Technical Media, LCC, High Frequency Electronics, Sep. 2003.
[31]H.-M. Hsu, J.-Y. Chang, J.-G. Su, C.-C. Tsai, S.-C. Wong, C.-W. Chen, K.-R. Peng, S.- P. Ma, C.-H. Chen, T.-H. Yeh, C.-H. Lin, Y.-C. Sun, and C.-Y. Chang, "A 0.18-μm CMOS foundry RF CMOS technology with 70-GHz fT for single chip system solutions," in IEEE MTT-S Int. Microw. Symp. Dig., 2001, pp. 1869 - 1872.
[32]B.-J. Huang, K.-Y. Lin, and H. Wang, “Millimeter-wave low power and miniature CMOS multicascode low-noise amplifiers with noise reduction topology,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3049-3059, Dec. 2009.
[33]“IRE standards on electron tubes: Definition of terms,” Proc. IRE, vol. 45, no. 7, pp. 983–1010, July 1957.
[34]H. Rothe and W. Dahlke, “Theory of noisy fourpoles,” Proc. IRE, vol. 44, no. 6, pp. 811–818, June 1956.
[35]A. Rofougaran, G. Chang, J. Rael, J. Chang, M. Rofougaran, P. Chang, M. Djafari, J. Min, E. Roth, A. Abidi, and H. Samueli, “A single-chip 900-MHz spread-spectrum wireless transceiver in 1-μm CMOS—Part II: Receiver design,” IEEE J. Solid-State Circuits, vol. 33, pp. 535–547, Apr. 1998.
[36]M.A.T. Sanduleanu, G. Zhang, and J. R. Long, "31-34GHz low noise amplifier with on-chip microstrip lines and interstage matching in 90-nm baseline CMOS," in IEEE Radio Frequency Integrated Circuits Symp., June 2006.
[37]M. Detratti, E. Lopez, E. perez, and R. Palacio, "Dual-band RF front-end solution for Hybrid Galileo/GPS mass market receivers" in IEEE Consumer Communications and Networking Conf., Jan. 2008, pp. 603 - 607.
[38]K. Phansathitwong, and H. Sjoland, "Performance trade-offs in designing a dual-band CMOS IEEE 802.11 a/b frontend," in Proc. IEEE Asia-Pacific Conf. on Circuits and Systems, Dec. 2004, vol. 1, pp. 333 - 336.
[39]S.-F. R. Chang, W.-L. Chen, S.-C. Chang, C.-K. Tu, C.-L. Wei, C.-H. Chien, C.-H. Tsai, J. Chen, and A. Chen, "A dual-band RF transceiver for multistandard WLAN applications," IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 1048-1055, Mar. 2005.
[40]J. Tham, M. Margrait, B. Pregardier, C. Hull, R. Magoon, and F. Carr, "A 2.7 V 900-MHz dual-band transceiver IC for digital wireless communications,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 282–291, Mar. 1999.
[41]J. Ryynanen, K. Kivekas, J. Jussia, A. Parssinen, and K. Halonen, “A dual-band RF front end for WCDMA and GSM applications,” IEEE J. Solid-State Circuits, vol. 364, no. 8, pp. 1198–1204, Aug. 2001.
[42]C. F. Jou, K. H. Cheng, W. C. Lien, C.H. Wu, and C. H. Yen, “Design of a concurrent dual-band receiver front-end in 0.18μm CMOS for WLANs IEEE 802.11a/b/g applications,” in IEEE International Midwest Symp. on Circuits and Systems, June 2004, pp. 177 - 180.
[43]H.-S. Jhon, I. Song, J. Jeon, H. Jung, M. Koo, B.-G. Park, J.D. Lee, and H. Shin, "8mW 17/24 GHz dual-band CMOS low-noise amplifier for ISM-band application," IEEE Electronics Letters, vol. 44, no. 23, pp. 1353 – 1354, Nov. 2008.
[44]M. B. Amor, A. Fakhfakh, H. Mnif, and M. Loulou, “Dual band CMOS LNA design with current reuse topology,” in Int. Conf. on Design and Test of Integrated Systems in Nanoscale Technology, Sept. 2006, pp. 57 – 61.
[45]O. Dupuis, X. Sun, G. Carchon, P. Soussan, M. Ferndahl, S. Decoutere, and W. D. Raedt, “24 GHz LNA in 90nm RF-CMOS with high-Q above-IC inductors,” in Proc. of the 31st European Solid-State Circuits Conf., Sept. 2005, pp. 89 – 92.
[46]J.-F. Yeh, C.-Y. Yang, H.-C. Kuo, and H.-R. Chuang, “A 24-GHz transformer-based single-in differential-out CMOS low-noise amplifier,” in IEEE Radio Frequency Integrated Circuits Symp., June 2009, pp. 299-302.
[47]A. Sayag, S. Levin, D. Regev, D. Zfira, S. Shapira, D. Goren, and D. Ritter, “One stage 24 GHz LNA with 6.4dB gain and 2.8 dB NF using 0.18 μm CMOS technology and slow wave transmission lines,” in IEEE International Conf. on Microwaves, Communications, Antennas and Electronic Systems, May 2008, pp. 1 – 10.
[48]R. Eye and D. Allen, "77 GHz low noise amplifier for automotive radar applications," in IEEE Gallium Arsenide Integrated Circuit Symp., Nov. 2003, pp. 139 - 142.
[49]L. Wang, J. Borngraeber, and W. Winkler, "77 GHz automotive radar receiver front-end in SiGe:C BiCMOS technology," in Proc. of the 32nd European Solid-State Circuits Conf., Sept. 2006, pp. 388 - 391.
[50]M. Fahimnia, M.R. N.-Ahamadi, B. Biglarbeigian, S. S.-Naieni, M. M.-Taheri, and Y. Wang, "A 77 GHz low noise amplifier using low-cost 0.13μm CMOS technology," in Microsystems and Nanoelectronics Research Conf., Oct. 2009, pp. 73 - 75.
[51]I. Haroun, J. Wight, C. Plett, and A. Fathy, "Multi-band 700MHz/ 2.4GHz/ 60GHz RF front-end for radio-over-fiber base stations," in IEEE Radio and Wireless Symp., Jan. 2010, pp. 629 - 632.
[52]M. El Nozahi, K. Entesari, and E. S.-Sinencio, "A systematic system level design methodology for dual band CMOS RF receivers," in Midwest Symp. on Circuits and Systems, Aug. 2007, pp. 1014 - 1017.
[53]E. Song, Y. Koo, Y.-J. Jung, D.-H. Lee, S. Chu, and S.-I. Chae, "A 0.25-μm CMOS quad-band GSM RF transceiver using an efficient LO frequency plan," in IEEE Journal of Solid-State Circuits, vol. 40, pp. 1094 - 1106, May 2005.
[54]Y.-L. Kuo and K.-L. Wong, “Printed double-T monopole antenna for 2.4/5.2 GHz dualband WLAN operations,” IEEE Trans. Antennas Propagat., vol. 51, no. 9, pp. 2187-2192, Sept. 2003.
[55]J.-Y. Jan and L.-C. Tseng, “Small planar monopole antenna with a shorted parasitic inverted-L wire for wireless communications in the 2.4, 5.2, and 5.8-GHz bands,” IEEE Trans. Antennas Propagat., vol. 52, no. 7, pp. 1903-1905, July, 2004.
[56]K.-L. Wong, L.-C. Chou, and C.-M. Su, “Dual-band flate-plate antenna with a shorted parasitic element for laptop applications,” IEEE Trans. Antennas Propagat., vol. 53, no. 1, pp. 539-544, Jan. 2005.
[57]S.-B. Chen, Y.-C. Jiao, W. Wang, and Zhang, F.-S., “Modified T-shaped planar monopole antennas for multiband operation,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 8, pp. 3267-3270, Aug. 2006.
[58]L.-C. Chou and K.-L. Wong, “Uni-Planar dual-band monopole antenna for 2.4/5 GHz WLAN operation in the laptop computer,” IEEE Trans. Antennas Propagat., vol. 55, no. 12, pp. 3739-3741, Dec. 2007.
[59]R. L. Li, B. Pan, J. Laskar, and M. M. Tentzeris, “A novel low-profile broadband dualfrequency planar antenna for wireless handsets,” IEEE Trans. Antennas Propagat., vol. 56, no. 4, pp. 1155-1162, April 2008.
[60]B. Schoenlinner, J. P. Ebling, L. C. Kempel, and G. M. Rebeiz, "Compact multibeam dual-frequency (24 and 77 GHz) imaging antenna for automotive radars," in European Microw. Conf., Oct. 2003, pp. 785 - 788.
[61]http://standards.ieee.org/getieee802/802.11.html
[62]http://www.3com.com
[63]http://www.pericom.com/pdf/applications/AW075.pdf
[64]http://en.kioskea.net/contents/wifi/wifiintro.php3
[65]Guillermo Gonzalez, Microwave Transistors Amplifiers - Analysis and Design, 2nd ed., Prentice Hall, 1996.
[66]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed., Cambridge, 2004.
[67]A. van der Ziel, Noise in Solid State Devices and Circuits. New York: Wiley, 1986.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔