|
[1]D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE Journal of Solid-State Circuits, vol. 32, no. 5, pp. 745 - 759, May 1997. [2]S. Wu and B. Razavi, "A 900-MHz/1.8-GHz CMOS receiver for dual-band applications," IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 2178 - 2185, Dec. 1998. [3]Y. Wang, J. S. Duster, and K. T. Kornegay, "Design of an ultra-wideband low noise amplifier in 0.13μm CMOS," in IEEE Int. Symp. on Circuits and Systems, vol. 5, July 2005, pp. 5067 - 5070. [4]S. Chehrazi, A. Mirzaei, R. Bagheri, and A. A. Abidi, "A 6.5 GHz wideband CMOS low noise amplifier for multi-band use," in Proc. IEEE Custom Integrated Circuits Conf., Sept. 2005, pp. 801 - 804. [5]R.-C. Liu, C.-S. Lin, K.-L. Deng, and H. Wang, "A 0.5-14-GHz 10.6-dB CMOS cascode distributed amplifier," in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2003, pp. 139 - 140. [6]F. Zhang and P. Kinget, "Low power programmable-gain CMOS distributed LNA for ultra-wideband applications," in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2005, pp. 78 - 81. [7]H. Knapp, D. Zoschg, T. Meister, K. Aufinger, S. Boguth, and L. Treitinger, "15 GHz wideband amplifier with 2.8 dB noise figure in SiGe bipolar technology," in Proc. IEEE Radio Frequency Integrated Circuits Symp., Jun. 2003, pp. 287 - 290. [8]S. Andersson, C. Svensson, and O. Drugge, "Wideband LNA for a multistandard wireless receiver in 0.18μm process," in Proc. Eur. Solid-State Circuits Conf., Sep. 2003, pp. 655 - 658. [9]R. Gharpurey, "A broadband low-noise front-end amplifier for ultra wideband in 0.13μm CMOS," in Proc. IEEE Custom Integrated Circuits Conf., Oct. 2004, pp. 605 - 608. [10]A. Bevilacqua, and A. M. Niknejad, "An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receivers," in IEEE ISSCC Dig. Tech. Papers, Feb. 2004, pp. 382 - 383. [11]C.-F. Liao, and S.-I. Liu, "A broadband noise-canceling CMOS LNA for 3.1-10.6-GHz UWB receivers," IEEE Journal of Solid-State Circuits, vol. 42, no. 2, pp. 329 - 339, Feb. 2007. [12]K.-H. Chen et al., "An ultra-wide-band 0.4-10-GHz LNA in 0.18μm CMOS," IEEE Trans. Circuits Syst. II, vol. 54, no. 3, pp. 217 - 221, Mar. 2007. [13]K.-J. Sun, Z.-M. Tsai, K.-Y. Lin, and H. Wang, "A noise optimization formulation for CMOS low-noise amplifiers with on-chip low-Q inductors," IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1554 - 1560, Apr. 2006. [14]S. Shekhar, X. Li, and D. J. Allstot, "A CMOS 3.1-10.6 GHz UWB LNA employing stagger-compensated series peaking," in Proc. Eur. Solid-State Circuits Conf., Jun. 2006, pp. 1 - 4. [15]J. Liu, G. Chen, and R. Zhang, "Design of a noise-canceling differential CMOS LNA for 3.1-10.6 GHz UWB receivers," in IEEE 8th Int. Conf. on ASIC, Oct. 2009, pp. 1169 - 1172. [16]L.-H. Lu, H.-H. Hsieh, and Y.-S. Wang, "A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier," IEEE Microwave and Wireless Compon. Lett., vol. 15, no. 10, pp. 685 - 687, Oct. 2005. [17]T. K. K. Tsang and M. N. El-Gamal, “Dual-band sub-1V CMOS LNA for 802.11 a/b WLNA applications,” in Proc. IEEE Int. Symp. Circuits Syst., vol. 1, May 2003, pp. 217 – 220. [18]V. K. Dao, B. G. Choi, and C. S. Park, “A dual-band CMOS RF front-end for 2.4/5.2 GHz applications,” in IEEE Radio Wireless Symp., Jan. 2007, pp. 145 – 148. [19]H. Hashemi, and A. Hajimiri, "Concurrent multiband low-noise amplifiers - theory, design, and applications," IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 288 - 301, Jan. 2002. [20]Z. Li, R. Quintal, and K. K. O, “A dual-band CMOS front-end with two gain modes for wireless LAN applications,” IEEE Journal of Solid-State Circuits, vol. 39, no. 11, pp. 2069 - 2073, Nov. 2004. [21]F. Tzeng, A. Jahanian, and P. Heydari, "A multiband inductor-reuse CMOS low-noise amplifier," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 3, pp. 209 - 213, Mar. 2008. [22]V. Jain, F. Tzeng, L. Zhou, and P. Heydari, "A single-chip dual-band 22-to-29GHz/77-to-81GHz BiCMOS transceiver for automotive radars," in IEEE Int. Solid-State Circuits Conf., Jan. 2009, pp. 308 - 310. [23]S.-S. Yoo and H.-J. Yoo, “Optimization of switchable inductor and application to reconfigurable LNA with self-matched capacitor,” in Proc. Asia-Pacific Microw. Conf., Dec. 2007, pp. 1 - 4. [24]C. Zhang, D. Huang, and D. Lou, "Optimization of cascode CMOS low noise amplifier using inter-stage matching network," in IEEE conf. on Electron Devices and Solid-State Circuits, Dec. 2003, pp. 465 - 468. [25]F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, "Wide-band CMOS low-noise amplifier exploiting thermal noise canceling," IEEE Journal of Solid-State Circuits, vol. 39, no. 2, pp. 275 - 282, Feb. 2004. [26]A. J. Scholten, H. J. Tromp, L. F. Tiemeijer, R. Van Langevelde, R. J. Havens, P. W. H. De Vreede, R. F. M. Roes, P. H. Woerlee, A. H. Montree, and D. B. M. Klaassen, "Accurate thermal noise modeling for deep-submicron CMOS," in Int. Electron Device Meeting Tech. Dig., Dec. 1999, pp. 155 - 158. [27]W. Zhuo, S. Embabi, J. Pineda de Gyvez, and E. Sanchez-Sinencio, "Using capacitive cross-coupling technique in RF low noise amplifiers and down-conversion mixer design," in Proc. ESSCIRC, 2000, pp. 116 - 119. [28]R. G. Meyer and A. K. Wong, “Blocking and desensitization in RF amplifiers,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 944 - 946, Aug. 1995. [29]Y. C. Chen and C. N. Kuo, "A 6-10-GHz ultra-wideband tunable LNA," in IEEE Intl. Conf. on Circuits and Systems, May 2005, pp. 5099 - 5102 [30]K. Mandke, H. Nam, L. Yerramneni, and C. Zuniga, "The evolution of ultra wide band radio for wireless personal area networks," Summit Technical Media, LCC, High Frequency Electronics, Sep. 2003. [31]H.-M. Hsu, J.-Y. Chang, J.-G. Su, C.-C. Tsai, S.-C. Wong, C.-W. Chen, K.-R. Peng, S.- P. Ma, C.-H. Chen, T.-H. Yeh, C.-H. Lin, Y.-C. Sun, and C.-Y. Chang, "A 0.18-μm CMOS foundry RF CMOS technology with 70-GHz fT for single chip system solutions," in IEEE MTT-S Int. Microw. Symp. Dig., 2001, pp. 1869 - 1872. [32]B.-J. Huang, K.-Y. Lin, and H. Wang, “Millimeter-wave low power and miniature CMOS multicascode low-noise amplifiers with noise reduction topology,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 12, pp. 3049-3059, Dec. 2009. [33]“IRE standards on electron tubes: Definition of terms,” Proc. IRE, vol. 45, no. 7, pp. 983–1010, July 1957. [34]H. Rothe and W. Dahlke, “Theory of noisy fourpoles,” Proc. IRE, vol. 44, no. 6, pp. 811–818, June 1956. [35]A. Rofougaran, G. Chang, J. Rael, J. Chang, M. Rofougaran, P. Chang, M. Djafari, J. Min, E. Roth, A. Abidi, and H. Samueli, “A single-chip 900-MHz spread-spectrum wireless transceiver in 1-μm CMOS—Part II: Receiver design,” IEEE J. Solid-State Circuits, vol. 33, pp. 535–547, Apr. 1998. [36]M.A.T. Sanduleanu, G. Zhang, and J. R. Long, "31-34GHz low noise amplifier with on-chip microstrip lines and interstage matching in 90-nm baseline CMOS," in IEEE Radio Frequency Integrated Circuits Symp., June 2006. [37]M. Detratti, E. Lopez, E. perez, and R. Palacio, "Dual-band RF front-end solution for Hybrid Galileo/GPS mass market receivers" in IEEE Consumer Communications and Networking Conf., Jan. 2008, pp. 603 - 607. [38]K. Phansathitwong, and H. Sjoland, "Performance trade-offs in designing a dual-band CMOS IEEE 802.11 a/b frontend," in Proc. IEEE Asia-Pacific Conf. on Circuits and Systems, Dec. 2004, vol. 1, pp. 333 - 336. [39]S.-F. R. Chang, W.-L. Chen, S.-C. Chang, C.-K. Tu, C.-L. Wei, C.-H. Chien, C.-H. Tsai, J. Chen, and A. Chen, "A dual-band RF transceiver for multistandard WLAN applications," IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 1048-1055, Mar. 2005. [40]J. Tham, M. Margrait, B. Pregardier, C. Hull, R. Magoon, and F. Carr, "A 2.7 V 900-MHz dual-band transceiver IC for digital wireless communications,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 282–291, Mar. 1999. [41]J. Ryynanen, K. Kivekas, J. Jussia, A. Parssinen, and K. Halonen, “A dual-band RF front end for WCDMA and GSM applications,” IEEE J. Solid-State Circuits, vol. 364, no. 8, pp. 1198–1204, Aug. 2001. [42]C. F. Jou, K. H. Cheng, W. C. Lien, C.H. Wu, and C. H. Yen, “Design of a concurrent dual-band receiver front-end in 0.18μm CMOS for WLANs IEEE 802.11a/b/g applications,” in IEEE International Midwest Symp. on Circuits and Systems, June 2004, pp. 177 - 180. [43]H.-S. Jhon, I. Song, J. Jeon, H. Jung, M. Koo, B.-G. Park, J.D. Lee, and H. Shin, "8mW 17/24 GHz dual-band CMOS low-noise amplifier for ISM-band application," IEEE Electronics Letters, vol. 44, no. 23, pp. 1353 – 1354, Nov. 2008. [44]M. B. Amor, A. Fakhfakh, H. Mnif, and M. Loulou, “Dual band CMOS LNA design with current reuse topology,” in Int. Conf. on Design and Test of Integrated Systems in Nanoscale Technology, Sept. 2006, pp. 57 – 61. [45]O. Dupuis, X. Sun, G. Carchon, P. Soussan, M. Ferndahl, S. Decoutere, and W. D. Raedt, “24 GHz LNA in 90nm RF-CMOS with high-Q above-IC inductors,” in Proc. of the 31st European Solid-State Circuits Conf., Sept. 2005, pp. 89 – 92. [46]J.-F. Yeh, C.-Y. Yang, H.-C. Kuo, and H.-R. Chuang, “A 24-GHz transformer-based single-in differential-out CMOS low-noise amplifier,” in IEEE Radio Frequency Integrated Circuits Symp., June 2009, pp. 299-302. [47]A. Sayag, S. Levin, D. Regev, D. Zfira, S. Shapira, D. Goren, and D. Ritter, “One stage 24 GHz LNA with 6.4dB gain and 2.8 dB NF using 0.18 μm CMOS technology and slow wave transmission lines,” in IEEE International Conf. on Microwaves, Communications, Antennas and Electronic Systems, May 2008, pp. 1 – 10. [48]R. Eye and D. Allen, "77 GHz low noise amplifier for automotive radar applications," in IEEE Gallium Arsenide Integrated Circuit Symp., Nov. 2003, pp. 139 - 142. [49]L. Wang, J. Borngraeber, and W. Winkler, "77 GHz automotive radar receiver front-end in SiGe:C BiCMOS technology," in Proc. of the 32nd European Solid-State Circuits Conf., Sept. 2006, pp. 388 - 391. [50]M. Fahimnia, M.R. N.-Ahamadi, B. Biglarbeigian, S. S.-Naieni, M. M.-Taheri, and Y. Wang, "A 77 GHz low noise amplifier using low-cost 0.13μm CMOS technology," in Microsystems and Nanoelectronics Research Conf., Oct. 2009, pp. 73 - 75. [51]I. Haroun, J. Wight, C. Plett, and A. Fathy, "Multi-band 700MHz/ 2.4GHz/ 60GHz RF front-end for radio-over-fiber base stations," in IEEE Radio and Wireless Symp., Jan. 2010, pp. 629 - 632. [52]M. El Nozahi, K. Entesari, and E. S.-Sinencio, "A systematic system level design methodology for dual band CMOS RF receivers," in Midwest Symp. on Circuits and Systems, Aug. 2007, pp. 1014 - 1017. [53]E. Song, Y. Koo, Y.-J. Jung, D.-H. Lee, S. Chu, and S.-I. Chae, "A 0.25-μm CMOS quad-band GSM RF transceiver using an efficient LO frequency plan," in IEEE Journal of Solid-State Circuits, vol. 40, pp. 1094 - 1106, May 2005. [54]Y.-L. Kuo and K.-L. Wong, “Printed double-T monopole antenna for 2.4/5.2 GHz dualband WLAN operations,” IEEE Trans. Antennas Propagat., vol. 51, no. 9, pp. 2187-2192, Sept. 2003. [55]J.-Y. Jan and L.-C. Tseng, “Small planar monopole antenna with a shorted parasitic inverted-L wire for wireless communications in the 2.4, 5.2, and 5.8-GHz bands,” IEEE Trans. Antennas Propagat., vol. 52, no. 7, pp. 1903-1905, July, 2004. [56]K.-L. Wong, L.-C. Chou, and C.-M. Su, “Dual-band flate-plate antenna with a shorted parasitic element for laptop applications,” IEEE Trans. Antennas Propagat., vol. 53, no. 1, pp. 539-544, Jan. 2005. [57]S.-B. Chen, Y.-C. Jiao, W. Wang, and Zhang, F.-S., “Modified T-shaped planar monopole antennas for multiband operation,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 8, pp. 3267-3270, Aug. 2006. [58]L.-C. Chou and K.-L. Wong, “Uni-Planar dual-band monopole antenna for 2.4/5 GHz WLAN operation in the laptop computer,” IEEE Trans. Antennas Propagat., vol. 55, no. 12, pp. 3739-3741, Dec. 2007. [59]R. L. Li, B. Pan, J. Laskar, and M. M. Tentzeris, “A novel low-profile broadband dualfrequency planar antenna for wireless handsets,” IEEE Trans. Antennas Propagat., vol. 56, no. 4, pp. 1155-1162, April 2008. [60]B. Schoenlinner, J. P. Ebling, L. C. Kempel, and G. M. Rebeiz, "Compact multibeam dual-frequency (24 and 77 GHz) imaging antenna for automotive radars," in European Microw. Conf., Oct. 2003, pp. 785 - 788. [61]http://standards.ieee.org/getieee802/802.11.html [62]http://www.3com.com [63]http://www.pericom.com/pdf/applications/AW075.pdf [64]http://en.kioskea.net/contents/wifi/wifiintro.php3 [65]Guillermo Gonzalez, Microwave Transistors Amplifiers - Analysis and Design, 2nd ed., Prentice Hall, 1996. [66]T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed., Cambridge, 2004. [67]A. van der Ziel, Noise in Solid State Devices and Circuits. New York: Wiley, 1986.
|