[1]T. J. E. Miller (Ed.), Reactive Power Control in Electric Systems. New York: Wiley, 1982.
[2]N. G. Hingorani and L. Gyugyi, Understanding FACTS. New York: IEEE Press, 2000.
[3]C. Schauder and H. Mehta, “Vector analysis and control of advanced static VAR compensators,” Proc. Inst. Electr. Eng. –C, vol. 140, no. 4, pp. 299-306, 1993.
[4]G. Joos, L. T. Moran, and P. D. Ziogas, “Performance analysis of a PWM inverter VAR compensator,” IEEE Trans. Power Electron., vol. 6, no. 3, pp. 380-391, 1991.
[5]B. S. Chen and Y. Y. Hsu, “A minimal harmonic controller for a STATCOM,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 655-664, 2008.
[6]B. S. Chen and Y. Y. Hsu, “An analytical approach to harmonic analysis and controller design of a STATCOM,” IEEE Trans. Power Del., vol. 22, no. 1, pp. 423-432, 2007.
[7]E. Muljadi, R. Shiferl, and T. A. Lipo, “Induction machine phase balancing by unsymmetrical thyristor voltage control,” IEEE Transactions on Industry Applications, vol. IA-21, no. 4, pp. 669-678, 1985
[8]A. Campos, G. Joos, P. Ziogas, and J. Lindsay, “Analysis and design of a series voltage compensator for three-phase unbalanced source,” IEEE Trans. on Industry Electronics, vol. 39, no. 2, 1992
[9]W. E. Brumsickle, R. S. Schneider, G. A. Luckjiff, D. M. Divan, and M. F. McGranagham, “Dynamic sag correctors: cost-effective industrial power line conditioning,” IEEE Trans. Industry Applications, vol. 37, no. 1, 2001.
[10]B. K. Lee and M. Ehsani, “A simplified functional simulation model for three-phase voltage–source inverter using switching function concept,” IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 309-321, 2001.
[11]Gyugyi, “Reactive power generation and control by thyristor circuits,” IEEE Trans. on Industry Applications, vol. IA-15, no. 5, pp.521-531, 1979.
[12]Y. Sumi, Y. Harumoto, T. Hasegawa, M. Yano, K. Ikeda, and T. Matsuura, “New static var control using force-commutated inverters,” IEEE Trans. on Power Apparatus and Systems, vol. PAS-100, no. 9,pp. 4216-4224, 1981.
[13]C.W. Edwards, K. E. Mattern, E. J. Stacey, P. R. Nannery, and J. Gubernick, “Advanced static var generator employing GTO thyristors,” IEEE Trans. On Power Delivery, vol. 3, no. 4, pp.1622-1627, 1988.
[14]S.Mori, K. Matsuno, M. Takeda, M. Seto, S. Murakami, and F. Ishiguro,“Development of a large static var generator using self-commutated inverters for improving power system stability,” IEEE Trans. on Power Systems, vol. 8, no. 1, pp. 371-377, 1992.
[15]C. Schauder, M. Gernhardt, E. Stacey, T. Lemak, L.Gyugyi, T.W. Cease, and A.Edris, “Development of a ± 100MVAR static condenser for voltage control of transmission systems,” IEEE Trans. on Power Delivery, vol. 10, no. 3, pp. 1486-1496, 1994.
[16]C. Schauder, E.Stacey, M. Lund, L. Gyugyi, L. Kovalsky, A. Keri, A. Mehraban, and A. Edris, “AEP UPFC project: installation, commissioning and operation of the ± 160MVA STATCON (phase I),” IEEE Trans. on Power Delivery, vol. 13, no. 4, pp. 1530-1535, 1997.
[17]C. T. Chang and Y. Y. Hsu, “Design of an ANN tuned adaptive UPFC supplementary damping controller for power system dynamic performance enhancement,” Electr. Power Syst. Res., vol. 66, pp. 259-265, 2003.
[18]S. Mohagheghi, R. G. Harley, and G. K. Venayagamoorthy, “An adaptive Mamdani fuzzy logic based controller for STATCOM in a multimachine power system,” in Proc. ISAP, pp. 228-233, 2005.
[19]Y. D. Valle, J. C. Hernandez, G. K. Venayagamoorthy, and R. G. Harley, “Multiple STATCOM allocation and sizing using particle swarm optimization,” IEEE Power Systems Conference and Exposition, pp. 1884-1891, 2006.
[20]Y. D. Valle, J. C. Hernandez, G. K. Venayagamoorthy, and R. G. Harley, “Optimal STATCOM sizing and placement using particle swarn optimization,” IEEE Transmission & Distribution Conference and Exposition, pp. 1-6, 2006.
[21]E. N. Azadani, S. H. Hosseinian, M. Janati, and P. Hasanpor, “Optimal placement of multiple STATCOM,” 2008. MEPCON Power System Conference, pp. 523-528, 2008.
[22]Y. D. Valle, J. C. Hernandez, G. K. Venayagamoorthy, and R. G. Harley, “Enhanced particle swarm optimizer for power system applications,” IEEE Swarm Intelligence Symposium, pp. 1-7, 2008.
[23]Z. L. Gaing, “A particle swarm optimization approach for optimum design of PID controller in AVR system,” IEEE Trans .Energy Convers., vol. 19, no. 2, pp. 384-391, 2004.
[24]S. Mohagheghi, Y. del Valle, G. K. Venayagamoorthy, and R. G. Harley, “A proportional–integral type adaptive critic design–based neuro controller for a static compensator in a multimachine power system,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 86-96, 2007.
[25]H. Ishibuchi and T. Nakaskima, “Improving the performance of fuzzy classifier systems for pattern classification problems with continuous attributes,” IEEE Trans. Ind. Electron., vol. 46, no. 6, pp. 1057-1068, 1999.
[26]S. Mohagheghi, G. K. Venayagamoorthy, and R. G. Harley, “Fully evolvable optimal neurofuzzy controller using adaptive critic designs,” IEEE Trans. Fuzzy. Syst., vol. 16, no. 6, pp. 1450-1461, 2008.
[27]J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf. Neural Networks, vol. IV, Perth, Australia, pp. 1942-1948, 1995.
[28]J. Kennedy and R. Eberhart, “A new optimizer using particle swarm theory,” in Proc. 6th Int. Symp. Micromachine and Human Science, Nagoya, pp. 39-43, 1995.
[29]Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc. IEEE Int. Conf. Evol. Comput., Anchorage, AK, pp. 69-73, 1998.
[30]B. Biswal, P. K. Dash, and B. K. Panigrahi, "Power quality disturbance classification using fuzzy c-means algorithm and adaptive particle swarm optimization," IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 212-220, 2009.
[31]F. J. Lin, L. T. Teng, J. W. Lin, and S. Y. Chen, "Recurrent functional- link-based-fuzzy-neural-network-controlled induction-generator system using improved particle swarm optimization," IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1557-1577, 2009.
[32]S. H. Ling, H. H. C. Iu, F. H. F. Leung, and K. Y. Chan, "Improved hybrid particle swarm optimized wavelet neural network for modeling the development of fluid dispensing for electronic packaging," IEEE Trans. Ind. Electron., vol. 55, no. 9, pp. 3447-3460, 2008.
[33]A. Chatterjee, K. Pulasinghe, K. Watanabe, and K. Izumi, “A particle–swarm–optimized fuzzy–neural network for voice–controlled robot systems,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1478-1489, 2005.
[34]I. N. Kassabalidis, M. A. El-Sharkawi, R. J. Marks, L. S. Moulin, and A. P. Alves da Silva, “Dynamic security border identification using enhanced particle swarm optimization,” IEEE Trans. power Syst., vol. 17, no. 3, pp. 723-729, 2002.
[35]S. Naka, T. Genji, T. Yura, and Y. Fukuyama, “A hybrid particle swarm optimization for distribution state estimation,” IEEE Trans. power Syst., vol. 18, no. 1, pp. 60-68, 2003.
[36]B. Biswal, P. K. Dash, and B. K. Panigrahi, "Power quality disturbance classification using fuzzy c-means algorithm and adaptive particle swarm optimization," IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 212-220, 2009.
[37]W. Y. Yang, W. Cao, T. S. Chung, and J. Morris, Applied numerical methods using MATLAB®. New York: Wiley, ch. 6, 2005.
[38]J. R. Espinoza, G. Joos, J. I. Guzman, L. A. Moran, and R. P. Burgos, “Selective harmonic elimination and current/voltage control in current/voltage–source topologies: a unified approach,” IEEE Trans. Ind. Electron., vol. 48, no. 1, pp. 71-81, 2001.
[39]B. M. Han and S. I. Moon, “Static reactive–power compensator using soft–switching current–source inverter,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1158-1165, 2001.
[40]A. B. Arsoy, Y. Liu, P. F. Ribeiro, and F. Wang, “STATCOM–SMES,” IEEE Ind. Appl. Magazine, vol. 9, no. 2, pp. 21-28, 2003.
[41]B. Singh, S. S. Murthy, and S. Gupta, “STATCOM–based voltage regulator for self–excited induction generator feeding nonlinear loads,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1437-1452, 2006.
[42]Y. Cheng, C. Qian, M. L. Crow, S. Pekarek, and S. Atcitty, “A comparison of diode–clamped and cascaded multilevel converters for a STATCOM with energy storage,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1512-1521, 2006.
[43]P. Flores, J. Dixon, M. Ortuzar, R. Carmi, P. Barriuso, and L. Moran, "Static var compensator and active power filter with power injection capability, using 27-level inverters and photovoltaic cells," IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 130-138, 2009.
[44]V. F. Corasaniti, M. B. Barbieri, P. L. Arnera, and M. I. Valla, "Hybrid active filter for reactive and harmonics compensation in a distribution network," IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 670-677, 2009.
[45]J.A. Barrena, L. Marroyo, M.A. Rodríguez Vidal, and J.R. Torrealday Apraiz, "Individual voltage balancing strategy for PWM cascaded h-bridge converter-based STATCOM," IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 21-29, 2008.
[46]Y.A.-R.I. Mohamed, and E.F. El-Saadany, "A control scheme for PWM voltage-source distributed-generation inverters for fast load-voltage regulation and effective mitigation of unbalanced voltage disturbances," IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2072-2084, 2008.
[47]翁永財,「應用於電壓調整之靜態同步補償器設計」,台灣大學電機所碩士論文,2002。[48]L. T. Moran, P. D. Ziogas, and G. Joos, “Analysis and design of a three-phase synchronous solid-state var compensator,” IEEE Trans. on Power Delivery, Vol. 25, No. 4, pp. 598-608, 1989.
[49]張權德,「用以改善動態特性之靜態同步補償器與整合型電力潮流控制器之設計」,台灣大學電機所博士論文,2002。[50]C. Hochgraf, R.H. Lasseter, “Statcom controls for operation with unbalanced voltages,” IEEE Trans. On Power Delivery, Vol. 13, No. 2, pp.538-544, 1998.
[51]PCL-1800 User’s Manual, Advantech Co., Ltd, 1995.