(3.239.33.139) 您好!臺灣時間:2021/03/05 19:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉建宏
研究生(外文):Chien-Hung Liu
論文名稱:應用粒子群優法設計靜態同步補償器之自調式比例積分控制器
論文名稱(外文):Design of a Self-Tuning PI Controller for a STATCOM Using Particle Swarm Optimization
指導教授:許源浴許源浴引用關係
指導教授(外文):Yuai
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:112
中文關鍵詞:靜態同步補償器自調比例積分控制器粒子群優法電壓調整虛功補償
外文關鍵詞:Static synchronous compensator (STATCOM)self-tuning PI controllerparticle swarm optimization (PSO)voltage regulationreactive power compensation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:217
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
靜態同步補償器能改善電力系統負載端電壓,其動作原理是當負載端電壓過高時,靜態同步補償器會吸收系統過多的虛功,降低負載端電壓。反之,當負載端電壓驟降時,則提供系統不足之虛功,使負載端電壓上升,而達到電壓調整的目的。而為了使靜態同步補償器調整系統負載端電壓到達適當的電壓值,則必須仰賴控制器。其中控制器參數的優劣將直接影響靜態同步補償器的穩態特性及暫態響應。傳統控制器之參數通常保持固定,造成在某些工作點之暫態響應並不太理想之情況,有鑒於此,本論文提出以粒子群優法來尋找最佳或近最佳之控制器參數,利用朗吉庫塔法來求得系統動態響應數值解,進而估算能量函數,再依能量函數求得最佳之控制器參數,進而改變控制器的參數,使得靜態同步補償器的暫態響應在各種負載狀況下皆能有快速補償的效果,並且亦有不錯的穩態特性,此控制器稱為粒子群優法自調比例積分控制器。由實驗結果顯示粒子群優法自調比例積分控制器確實能使得靜態同步補償器在各種負載變動情況下,皆能保持令人滿意的暫態響應及穩態特性。

Static synchronous compensator (STATCOM) can be used to provide system with reactive power under low voltage conditions and to absorb the excess reactive power when the load bus voltage is too high. Satisfactory dynamic responses cannot be guaranteed for all possible loading conditions by a conventional STATCOM of which the controller gains are designed based on a particular loading condition and remain fixed in daily operation of the STATCOM. Since the system load changes with time in daily operation, it is essential to adapt the controller gains in real-time based on the measured system load in order to have good dynamic responses all the time. In the dissertation, particle swarm optimization (PSO) self-tuning PI controller is proposed to adapt the controller gains for the STATCOM. An efficient formula is derived to estimate the resistance and inductance of the load. A computer routine based on Runge Kutta method is developed to obtain the numerical solutions of system dynamic equations which are essential for the estimation of particle energy functions in the PSO algorithm. An efficient PSO algorithm is presented to reach an optimal or near-optimal set of STATCOM controller parameters with least energy functions. To demonstrate the effectiveness of the proposed PSO self-tuning PI controller, experiments were conducted for the system with heavy load, medium load, and light load, respectively. It is concluded from the experimental results that satisfactory dynamic responses can be achieved by proposed PSO self-tuning controller under different loading conditions.

誌謝…………………………………………………… i
中文摘要……………………………………………… ii
英文摘要……………………………………………… iii
目錄…………………………………………………… iv
圖目錄………………………………………………… vii
表目錄………………………………………………… x
符號表………………………………………………… xi
第一章 緒論………………………………………………… 1
1-1研究背景…………………………………………… 1
1-2文獻回顧…………………………………………… 2
1-3 研究動機及目的………………………………… 9
1-4論文內容概述……………………………………… 10
第二章 STATCOM系統動態數學模型………………………… 12
2-1 前言……………………………………………… 12
2-2 STATCOM簡介……………………………………… 12
2-2-1 STATCOM基本工作原理……………………… 13
2-2-2 STATCOM基本架構………………………… 14
2-2-3 STATCOM對系統之影響……………………… 14
2-2-3-1 電壓穩定度…………………………… 15
2-2-3-2 暫態穩定度…………………………… 17
2-2-3-3 功因改善……………………………… 18
2-2-3-4 電壓支撐……………………………… 19
2-2-3-5 線路傳輸容量………………………… 21
2-2-3-5 線路傳輸容量………………………… 21
2-2-4 STATCOM模型……………………………… 23
2-3 負載模型……………………………………… 25
2-4 控制器模型…………………………………… 26
2-5 雙座標軸轉換………………………………… 30
第三章 STATCOM固定增益比例積分控制器之設計……… 33
3-1 前言…………………………………………… 33
3-2 STATCOM之固定增益比例積分控制器之設計………… 34
第四章 STATCOM之粒子群優法自調比例積分控制器之設計…… 37
4-1 前言…………………………………………………… 37
4-2負載估測法…………………………………………… 38
4-3 朗吉庫達法…………………………………………… 39
4-4 STATCOM補償電壓響應預測法………………………… 40
4-5 粒子群優法…………………………………………… 47
4-5-1 粒子參數定義…………………………………… 48
4-5-2 粒子搜尋範圍…………………………………… 49
4-5-3 能量函數………………………………………… 52
4-6 STATCOM之粒子群優法自調比例積分控制器之設計… 53
4-6-1 粒子群優法自調比例積分控制器調整控制器參數步驟 54
第五章 STATCOM系統研製……………………………………… 59
5-1 前言………………………………………………… 59
5-2硬體電路製作…………………………………………… 60
5-2-1 實作電路之系統架構…………………………… 61
5-2-2 研華PCL-1800資料擷取卡之簡介與設定[51]… 61
5-2-3 電力電路之製作………………………………… 66
5-2-4 驅動與互鎖電路之製作……………………… 69
5-2-5 同步控制電路與鎖相電路之製作……………… 72
5-2-6 電壓、電流感測器之製作……………………… 77
5-2-7 其他相關硬體之製作…………………………… 79
5-3 元件參數之選擇……………………………………… 80
5-3-1電容器電壓與電容值設計[47]………………… 80
5-3-2補償器濾波電感器的設計……………………… 82
5-3-3補償器容量的計算……………………………… 83
5-4 脈衝寬度調變(PWM)切換技術[14]……………… 83
5-4-1 PWM電壓控制器………………………………… 83
5-4-2 變流器切換頻率之分析………………………… 85
5-5 軟體程式規劃………………………………………… 86
5-5-1 軟體簡介………………………………………… 87
5-5-2 軟體程式之規劃設計………………………… 87
5-5-3 類比訊號輸入控制流程……………… 89
5-5-4 補償信號控制流程……………… 89
第六章 實驗結果………………………………………… 91
6-1 前言……………………………………………… 91
6-2 結果討論…………………………………………… 91
第七章 結論……………………………………… 103
7-1 本文主要貢獻…………………………………… 103
7-2 未來研究方向………………………………………… 104
參考文獻…………………………………………………………… 105
作者簡歷及相關著作……………………………………………… 111


[1]T. J. E. Miller (Ed.), Reactive Power Control in Electric Systems. New York: Wiley, 1982.
[2]N. G. Hingorani and L. Gyugyi, Understanding FACTS. New York: IEEE Press, 2000.
[3]C. Schauder and H. Mehta, “Vector analysis and control of advanced static VAR compensators,” Proc. Inst. Electr. Eng. –C, vol. 140, no. 4, pp. 299-306, 1993.
[4]G. Joos, L. T. Moran, and P. D. Ziogas, “Performance analysis of a PWM inverter VAR compensator,” IEEE Trans. Power Electron., vol. 6, no. 3, pp. 380-391, 1991.
[5]B. S. Chen and Y. Y. Hsu, “A minimal harmonic controller for a STATCOM,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 655-664, 2008.
[6]B. S. Chen and Y. Y. Hsu, “An analytical approach to harmonic analysis and controller design of a STATCOM,” IEEE Trans. Power Del., vol. 22, no. 1, pp. 423-432, 2007.
[7]E. Muljadi, R. Shiferl, and T. A. Lipo, “Induction machine phase balancing by unsymmetrical thyristor voltage control,” IEEE Transactions on Industry Applications, vol. IA-21, no. 4, pp. 669-678, 1985
[8]A. Campos, G. Joos, P. Ziogas, and J. Lindsay, “Analysis and design of a series voltage compensator for three-phase unbalanced source,” IEEE Trans. on Industry Electronics, vol. 39, no. 2, 1992
[9]W. E. Brumsickle, R. S. Schneider, G. A. Luckjiff, D. M. Divan, and M. F. McGranagham, “Dynamic sag correctors: cost-effective industrial power line conditioning,” IEEE Trans. Industry Applications, vol. 37, no. 1, 2001.
[10]B. K. Lee and M. Ehsani, “A simplified functional simulation model for three-phase voltage–source inverter using switching function concept,” IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 309-321, 2001.
[11]Gyugyi, “Reactive power generation and control by thyristor circuits,” IEEE Trans. on Industry Applications, vol. IA-15, no. 5, pp.521-531, 1979.
[12]Y. Sumi, Y. Harumoto, T. Hasegawa, M. Yano, K. Ikeda, and T. Matsuura, “New static var control using force-commutated inverters,” IEEE Trans. on Power Apparatus and Systems, vol. PAS-100, no. 9,pp. 4216-4224, 1981.
[13]C.W. Edwards, K. E. Mattern, E. J. Stacey, P. R. Nannery, and J. Gubernick, “Advanced static var generator employing GTO thyristors,” IEEE Trans. On Power Delivery, vol. 3, no. 4, pp.1622-1627, 1988.
[14]S.Mori, K. Matsuno, M. Takeda, M. Seto, S. Murakami, and F. Ishiguro,“Development of a large static var generator using self-commutated inverters for improving power system stability,” IEEE Trans. on Power Systems, vol. 8, no. 1, pp. 371-377, 1992.
[15]C. Schauder, M. Gernhardt, E. Stacey, T. Lemak, L.Gyugyi, T.W. Cease, and A.Edris, “Development of a ± 100MVAR static condenser for voltage control of transmission systems,” IEEE Trans. on Power Delivery, vol. 10, no. 3, pp. 1486-1496, 1994.
[16]C. Schauder, E.Stacey, M. Lund, L. Gyugyi, L. Kovalsky, A. Keri, A. Mehraban, and A. Edris, “AEP UPFC project: installation, commissioning and operation of the ± 160MVA STATCON (phase I),” IEEE Trans. on Power Delivery, vol. 13, no. 4, pp. 1530-1535, 1997.
[17]C. T. Chang and Y. Y. Hsu, “Design of an ANN tuned adaptive UPFC supplementary damping controller for power system dynamic performance enhancement,” Electr. Power Syst. Res., vol. 66, pp. 259-265, 2003.
[18]S. Mohagheghi, R. G. Harley, and G. K. Venayagamoorthy, “An adaptive Mamdani fuzzy logic based controller for STATCOM in a multimachine power system,” in Proc. ISAP, pp. 228-233, 2005.
[19]Y. D. Valle, J. C. Hernandez, G. K. Venayagamoorthy, and R. G. Harley, “Multiple STATCOM allocation and sizing using particle swarm optimization,” IEEE Power Systems Conference and Exposition, pp. 1884-1891, 2006.
[20]Y. D. Valle, J. C. Hernandez, G. K. Venayagamoorthy, and R. G. Harley, “Optimal STATCOM sizing and placement using particle swarn optimization,” IEEE Transmission & Distribution Conference and Exposition, pp. 1-6, 2006.
[21]E. N. Azadani, S. H. Hosseinian, M. Janati, and P. Hasanpor, “Optimal placement of multiple STATCOM,” 2008. MEPCON Power System Conference, pp. 523-528, 2008.
[22]Y. D. Valle, J. C. Hernandez, G. K. Venayagamoorthy, and R. G. Harley, “Enhanced particle swarm optimizer for power system applications,” IEEE Swarm Intelligence Symposium, pp. 1-7, 2008.
[23]Z. L. Gaing, “A particle swarm optimization approach for optimum design of PID controller in AVR system,” IEEE Trans .Energy Convers., vol. 19, no. 2, pp. 384-391, 2004.
[24]S. Mohagheghi, Y. del Valle, G. K. Venayagamoorthy, and R. G. Harley, “A proportional–integral type adaptive critic design–based neuro controller for a static compensator in a multimachine power system,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 86-96, 2007.
[25]H. Ishibuchi and T. Nakaskima, “Improving the performance of fuzzy classifier systems for pattern classification problems with continuous attributes,” IEEE Trans. Ind. Electron., vol. 46, no. 6, pp. 1057-1068, 1999.
[26]S. Mohagheghi, G. K. Venayagamoorthy, and R. G. Harley, “Fully evolvable optimal neurofuzzy controller using adaptive critic designs,” IEEE Trans. Fuzzy. Syst., vol. 16, no. 6, pp. 1450-1461, 2008.
[27]J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf. Neural Networks, vol. IV, Perth, Australia, pp. 1942-1948, 1995.
[28]J. Kennedy and R. Eberhart, “A new optimizer using particle swarm theory,” in Proc. 6th Int. Symp. Micromachine and Human Science, Nagoya, pp. 39-43, 1995.
[29]Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc. IEEE Int. Conf. Evol. Comput., Anchorage, AK, pp. 69-73, 1998.
[30]B. Biswal, P. K. Dash, and B. K. Panigrahi, "Power quality disturbance classification using fuzzy c-means algorithm and adaptive particle swarm optimization," IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 212-220, 2009.
[31]F. J. Lin, L. T. Teng, J. W. Lin, and S. Y. Chen, "Recurrent functional- link-based-fuzzy-neural-network-controlled induction-generator system using improved particle swarm optimization," IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1557-1577, 2009.
[32]S. H. Ling, H. H. C. Iu, F. H. F. Leung, and K. Y. Chan, "Improved hybrid particle swarm optimized wavelet neural network for modeling the development of fluid dispensing for electronic packaging," IEEE Trans. Ind. Electron., vol. 55, no. 9, pp. 3447-3460, 2008.
[33]A. Chatterjee, K. Pulasinghe, K. Watanabe, and K. Izumi, “A particle–swarm–optimized fuzzy–neural network for voice–controlled robot systems,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1478-1489, 2005.
[34]I. N. Kassabalidis, M. A. El-Sharkawi, R. J. Marks, L. S. Moulin, and A. P. Alves da Silva, “Dynamic security border identification using enhanced particle swarm optimization,” IEEE Trans. power Syst., vol. 17, no. 3, pp. 723-729, 2002.
[35]S. Naka, T. Genji, T. Yura, and Y. Fukuyama, “A hybrid particle swarm optimization for distribution state estimation,” IEEE Trans. power Syst., vol. 18, no. 1, pp. 60-68, 2003.
[36]B. Biswal, P. K. Dash, and B. K. Panigrahi, "Power quality disturbance classification using fuzzy c-means algorithm and adaptive particle swarm optimization," IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 212-220, 2009.
[37]W. Y. Yang, W. Cao, T. S. Chung, and J. Morris, Applied numerical methods using MATLAB®. New York: Wiley, ch. 6, 2005.
[38]J. R. Espinoza, G. Joos, J. I. Guzman, L. A. Moran, and R. P. Burgos, “Selective harmonic elimination and current/voltage control in current/voltage–source topologies: a unified approach,” IEEE Trans. Ind. Electron., vol. 48, no. 1, pp. 71-81, 2001.
[39]B. M. Han and S. I. Moon, “Static reactive–power compensator using soft–switching current–source inverter,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1158-1165, 2001.
[40]A. B. Arsoy, Y. Liu, P. F. Ribeiro, and F. Wang, “STATCOM–SMES,” IEEE Ind. Appl. Magazine, vol. 9, no. 2, pp. 21-28, 2003.
[41]B. Singh, S. S. Murthy, and S. Gupta, “STATCOM–based voltage regulator for self–excited induction generator feeding nonlinear loads,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1437-1452, 2006.
[42]Y. Cheng, C. Qian, M. L. Crow, S. Pekarek, and S. Atcitty, “A comparison of diode–clamped and cascaded multilevel converters for a STATCOM with energy storage,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1512-1521, 2006.
[43]P. Flores, J. Dixon, M. Ortuzar, R. Carmi, P. Barriuso, and L. Moran, "Static var compensator and active power filter with power injection capability, using 27-level inverters and photovoltaic cells," IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 130-138, 2009.
[44]V. F. Corasaniti, M. B. Barbieri, P. L. Arnera, and M. I. Valla, "Hybrid active filter for reactive and harmonics compensation in a distribution network," IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 670-677, 2009.
[45]J.A. Barrena, L. Marroyo, M.A. Rodríguez Vidal, and J.R. Torrealday Apraiz, "Individual voltage balancing strategy for PWM cascaded h-bridge converter-based STATCOM," IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 21-29, 2008.
[46]Y.A.-R.I. Mohamed, and E.F. El-Saadany, "A control scheme for PWM voltage-source distributed-generation inverters for fast load-voltage regulation and effective mitigation of unbalanced voltage disturbances," IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2072-2084, 2008.
[47]翁永財,「應用於電壓調整之靜態同步補償器設計」,台灣大學電機所碩士論文,2002。
[48]L. T. Moran, P. D. Ziogas, and G. Joos, “Analysis and design of a three-phase synchronous solid-state var compensator,” IEEE Trans. on Power Delivery, Vol. 25, No. 4, pp. 598-608, 1989.
[49]張權德,「用以改善動態特性之靜態同步補償器與整合型電力潮流控制器之設計」,台灣大學電機所博士論文,2002。
[50]C. Hochgraf, R.H. Lasseter, “Statcom controls for operation with unbalanced voltages,” IEEE Trans. On Power Delivery, Vol. 13, No. 2, pp.538-544, 1998.
[51]PCL-1800 User’s Manual, Advantech Co., Ltd, 1995.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 秦夢群、濮世緯(2006)。學校創新經營理念與實施之研究。教育研究與發展期刊,2:3,123-150。
2. 李隆盛; 賴春金(2007)。技職教育現況及其未來發展。國家菁英。3, 135-45 。
3. 李隆盛(2003)。綜高可做高職轉型的好方案。技術及職業教育雙月刊,78,26-30。
4. 沈清松(1993)詮釋學方法評介。國立政治大學研究通訊,5-17。
5. 湯志民(2006)。政大附中創新經營的理念與策略。教育研究月刊,145。60-72。
6. 于宗先(2004)。台灣幼少年人口銳減的警訊-語云:人無遠慮,必有近憂。經濟前瞻,93,26-31。
7. 徐明珠(2003)。全球化時代,臺灣高等教育之改革與創新。國家政策論壇 季刊,92,258-267。
8. 祝若穎(2009)。日本高等教育對少子化衝擊的因應及其啟示。教育資料與研究,86,175-198。
9. 吳清山;簡惠閔(2008)。臺灣高等技職教育改革分析:1996~2007 年。教育研究月刊。167, 47-67。
10. 林海清(2007)。少子化效應對技職教育發展之衝擊與因應策略。教育研究 月刊。151,32-45。
11. 曾瑞譙(2006)。大專技職校院面對「出生率降低」的學校經營管理壓力與因應之道。學校行政雙月刊,46,317-319。
12. 黃能堂(2007)。台灣人口結構變遷對技職教育的衝擊與因應。教育資料與研究,74,97-114。
13. 黃義良(2002)。淺析學校行銷策略適用於中小學的具體做法。教育資料與研究,45,112-119。
14. 鄧進權、張鈿富(2007)。台灣義務教育階段學生數與班級規模之預測與因應:面對「少子化」。教育資料與研究,72,115-132。
15. 蔡秀美(2003)。「全民終身教育思潮與台灣社區大學發展的省思」,成人教育雙月刊,76,2-9。鄭秀貞(2009)。提升專科學校整體教學品質。高教技職簡訊。036,16。
 
系統版面圖檔 系統版面圖檔