(3.237.178.91) 您好!臺灣時間:2021/03/02 23:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林沛吟
研究生(外文):Pei-Yin Lin
論文名稱:台電輸電線路故障定位平台之設計
論文名稱(外文):A Design of Taiwan Power Transmission Line Fault Location Platform
指導教授:劉志文劉志文引用關係
指導教授(外文):Chih-Wen Liu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:123
中文關鍵詞:161kV輸電線路數位電驛濾波演算法複合輸電線路故障定位演算法非同步量測校準故障定位平台
外文關鍵詞:161kV Transmission LineDigital RelaysFiltering AlgorithmCompound Transmission LineFault Location AlgorithmAsynchronous Measurement CalibrationFault Location Platform
相關次數:
  • 被引用被引用:5
  • 點閱點閱:343
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對台灣電力公司161kV輸電線路中諸多地下電纜與架空線路混合、多種架空(電纜)線徑組成之線路或三端線路架構等,介紹利用台電161kV已架設的數位電驛原始波形資料,進行故障定位準確度提升技術的研究,以改善目前數位保護電驛在事故時無法準確得出故障距離之問題。
本文介紹一新型濾波演算法以計算故障訊號的基頻成分,經由結合視窗濾波器與離散傅立葉轉換來增強此演算法對雜訊及諧波之抵抗力。本文並分別針對雙端點與三端點的複合輸電線,介紹其故障定位演算法及故障型態與相位判別演算法。另外,本文針對非同步量測訊號介紹一同步校準方法,用以改善故障定位的準確性,亦針對實際量測存在的非理想成分介紹一權重修正因子,藉此將故障定位位置趨向較穩定的正確解。
以上之研究成果,皆由161kV輸電線故障定位平台實現。利用此161kV輸電線路故障定位平台,在台電161kV輸電線路發生故障時,巡修人員可將事故紀錄檔輸入至此平台以檢視故障波形、確認線路參數並進行故障定位計算。故障定位之計算結果將以圖形化方式顯示,使巡修人員能馬上得知輸電線故障之參考位置,將有助於大幅縮減故障排除與復電時間。本平台除了利用模擬系統驗證所介紹之演算法的可行性,亦代入台電系統實際量測結果以驗證演算法的實用性。


Because of the influence of compound and three-terminal power transmission lines in 161kV transmission line system of Taipower Company, the theme of this thesis aims at providing the following algorithms and methods in order to raise the accuracy of fault location.
By the combination of FIR window filter and discrete Fourier transform, we propose a new type of filtering algorithm in order to accurate estimated fundamental component of fault signals. We also propose a modified fault phase classification method and two different fault location algorithms to deal with two-terminal and three-terminal compound lines faults, respectively. Moreover, we introduce an unsynchronized angle correction method and a weighting correction method to enhance the performance of the proposed fault location algorithms.
All of the above research efforts have been implemented on a 161kV transmission line fault location platform. When a fault occurred in a 161kV transmission line system, maintenance engineers can easily input the fault record files into this platform to verify the waveform of fault signals, to check the parameters of transmission lines, and to execute the fault location program. The computational result of faults location would be shown by a diagram to help maintenance engineers figure out the fault location. This platform has been verified by not only simulator generated fault data but also field measurements to show the practicality of this platform.


摘要 I
ABSTRACT II
目錄 III
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 研究背景 1
1-2 研究目標 1
1-3 文獻回顧討論 1
1-4 各章摘要 2
第二章 故障訊號數位濾波技術 4
2-1 前言 4
2-2 文獻回顧 4
2-2-1 直流偏移成分 5
2-2-2 諧波成分 8
2-2-3 比流器飽和 8
2-3 新型數位濾波演算法 9
2-4 故障訊號基頻相量計算策略 12
2-5 模擬訊號測試 17
2-6 小結 19
第三章 雙端複合輸型電線路之故障定位演算法及MATLAB/SIMULINK模擬驗證 20
3-1 前言 20
3-2 2-區段複合輸電線的故障定位演算法 20
3-3 2-區段演算法模擬結果與分析 25
3-4 n-區段複合型輸電線的故障定位演算法 31
3-5 n-區段複合輸電線演算法模擬結果與分析 33
3-6 兩端非同步量測時間校準演算法 39
3-6-1 相量的定義與非同步量測的影響 40
3-6-2 非同步量測的時間校準方法 42
3-7 兩端非同步量測校準演算法的測試驗證 45
3-8 權重式移動視窗故障定位校正演算法 48
3-8-1 移動式視窗基本原理 49
3-8-2 權重式移動視窗非同步角及定位校準 50
3-9 權重式移動視窗演算法的實例驗證 51
3-10 小結 53
第四章 三端複合型輸電線路之故障定位演算法及其MATLAB/SIMULINK模擬驗證 54
4-1 前言 54
4-2 系統架構與功能描述 54
4-3 純三端型輸電線路的故障定位演算法 57
4-4 三端3-區段複合輸電線路的故障定位演算法 64
4-5 三端n-區段複合輸電線路的故障定位演算法 67
4-6 純三端及三端複合線路演算法的模擬結果與分析 72
4-6-1 純三端型輸電線路故障定位技術測試 72
4-6-2 三端3-區段複合輸電線路故障定位技術測試 77
4-6-3 三端n-區複合線路故障定位技術測試 82
4-7 三端非同步量測時間校準演算法 87
4-8 三端非同步量測時間校準演算法模擬驗證 88
4-9 小結 93
第五章 三相換位輸電線故障型態及故障相判別 95
5-1 前言 95
5-2基本理論 95
5-3故障相判斷之改良 98
5-4 案例測試 101
5-5 小結 104
第六章 161kV輸電線路事故測距技術平台 105
6-1前言 105
6-2 161V輸電線路事故測距技術平台程式架構 105
6-3 故障定位平台操作注意事項 106
6-3-1 161kV輸電線參數檔案格式 106
6-3-2 各區供電處站名資料檔案 106
6-4 故障定位平台操作方法與步驟 108
6-5 小結 115
第七章 結論與未來研究方向 116
7-1 結論 116
7-2 未來研究方向 117
參考文獻 118
附錄A 161kV故障定位平台之參數檔案格式 121
附錄B 電力系統暫態檔案標準格式 122


[1] D. Novosel, D. G. Hart, E. Udren, and M. M. Saha, “Fault Location Using Digital Relay Data”, IEEE Computer Applications in Power, July 1995, pp. 45-50.
[2] L. Eriksson, M. M. Saha, and G. D. Rockefeller, “ An Accurate Fault Locator with Compensation for Apparent Reactance in the Fault Resistance Resulting from Remote-End Infeed”, IEEE Trans. on Power Apparatus and Systems, Vol. PAS-104, No. 2, February 1985, pp. 424-436.
[3] A. O. Ibe and B. J. Cory, “A Traveling Wave-Based Fault Locator for Two- and Three-Terminal Networks”, IEEE Trans. on Power Delivery, Vol. 1, No. 2, April 1986, pp. 283-288.
[4] M. Kezunovic, and B. Perunicic, “An Accurate Fault Location Algorithm Using Synchronized Sampling”, Electric Power Systems Research Journal, Vol. 29, No. 3, May 1994, pp. 161-169.
[5] A. A. Girgis, D. G. Hart, and W. L. Peterson, “A New Fault Location Technique for Two- and Three-Terminal Lines”, IEEE Trans. on Power Delivery, Vol. 7, No. 1, July 1992, pp. 98-107.
[6] R. K. Aggarwal, D. V. Doury, A. T. Johns, and A. Kalam, “A Practicial Approach to Accurate Fault Location on Extra High Voltage Teed Feeders”, IEEE Trans. on Power Delivery, Vol. 8, No. 3, July 1993, pp. 874-883.
[7] D. Novosel, D. G. Hart, E. Udren, and J. Garitty “Unsynchronized Two-Terminal Fault Location Estimation”, IEEE Trans. on Power Delivery, Vol. 11, No. 1, January 1996, pp. 130-138.
[8] Masayuki Abe, Nobuo Otsuzuki, Tokuo Emura, and Masayasu Takeuchi, “Development of a New Fault Location System for Multi-Terminal Single Transmission Lines”, IEEE Trans. on Power Delivery, Vol. 10, No. 1, January 1995, pp. 159-168.
[9] T. Nagasawa, M. Abe, N. Otsuzuki, T. Emura, Y. Jikihara, and M. Takeuchi, “Development of a New Fault Location Algorithm For Multi-Terminal Two Parallel Transmission Lines”, IEEE Trans. on Power Delivery, Vol. 7, No. 3, July 1992, pp. 1516-1532.
[10] J. A. Jiang, J. Z. Yang, Y. H. Lin, C. W. Liu, and J. C. Ma, “An Adaptive PMU Based Fault Detection/Location Technique for Transmission Lines, Part I: Theory and Algorithms”, IEEE Trans. on Power Delivery, 2000.
[11] C. S. Chen, C. W. Liu, “Fast and Accurate Fault Detection/Location Algorithms for Double-circuit/Three-Terminal Lines Using Phasor Measurement Units”, Journal of the Institute of Chinese Engineers, 2003
[12] J. A. Jiang, C. S. Chen, and C.W. Liu, “A New Protection Scheme for Fault Detection, Direction Discrimination, Classification, and Location in Transmission Lines”, IEEE Trans. on Power Delivery, Vol.18, No.1, pp.34-42, 2003.
[13] C.S. Chen, C.W. Liu, and J.A. Jiang, “A New Adaptive PMU Based Protection Scheme for Transposed/Untransposed Parallel Transmission Lines” IEEE Trans. on Power Delivery, Vol.17, No.4, pp.395-404, 2002.
[14] C.S. Yu, C.W. Liu, and, S.L. Yu, and J.A. Jiang, “A New PMU Based Fault Location Algorithm for Series Compensated Lines” IEEE Trans. on Power Delivery, Vol.17, No.1, pp.33-46, 2002.
[15] Y. H. Lin, C.W. Liu, and, C. S. Yu, “A New Fault Locator for Three-Terminal Transmission Line-Using Two-Terminal Synchronized Voltage and Current Phasors” IEEE Trans. on Power Delivery, Vol.17, No.2, pp.452-459, 2002.
[16]許萬寶,劉建勳等,『數位電驛故障指示誤差修正模型之建立』,Vol. 669,May, 台電工程月刊,2004.
[17] C.W. Liu, K.P. Lien, J.A. Jiang, C.S. Chen, “A Universal Fault Location Technique for N-Terminal (N>=3) Transmission Lines,” IEEE Transactions. on Power Delivery, 2008.
[18] G. Benmouyal, “Removal of DC-Offset in Current Waveforms Using Digital Mimic Filtering," IEEE Transactions on Power Delivery, vol. 10, no. 2, pp. 621-630, 1995.
[19] T. S. Sidhu, X. Zhang, F. Albasri and M. S. Sachdev, “Discrete Fourier Transform based technique for Removal of Decaying DC offset from Phasor Estimates,” IEEE Proceedings Generation, Transmission and Distribution, Vol. 150, No. 6, November 2003, pp. 745-752.
[20] J. C. Gu and S. L. Yu, “Removal of DC Offset in Current and Voltage Signals Using a Novel Fourier Filter Algorithm,” IEEE Transactions on Power Delivery, Vol. 15, January 2000, pp. 73 – 79.
[21] Y. Guo, M. Kezunovic, and D. Chen, “Simplified algorithms for removal of the effect of exponentially decaying DC-offset on the Fourier algorithm,” IEEE Transactions on Power Delivery, Vol. 18 , July 2003. pp. 711 – 717.
[22] M. S. Sachdev, and M. Nagpal, “A recursive least error squares algorithm for power system relaying and measurement applications,” IEEE Transactions on Power Delivery, Vol. 6, July 1991, pp. 1008 – 1051.
[23] O. Chaari, P. Bastard, and M. Meunier, “Prony''s method: an efficient tool for the analysis of earth fault currents in Petersen-coil-protected networks,” IEEE Transactions on Power Delivery, Vol. 10, July 1995, pp. 1234 – 1241.
[24] J. Z. Yang, and C. W. Liu, “Complete elimination of DC offset in current signals for relaying applications,” IEEE PES Winter Meeting 2000, Vol. 3, January 2000, pp. 1933 – 1938.
[25] IEEE Power System Relay Committee Report, “Gapped Core Current Transformer Characteristics and Performance,” IEEE Transactions on Power Delivery, Vol. 5, No. 4, November 1990, pp. 1732-1740.
[26] V. Molcrette, J. L. Kotny, J. P. Swan and J. F. Brudny, “Reduction of Inrush Current in Single-phase Transformer Using Virtual Air Gap Technique,” IEEE Transactions on Magnetics, Vol. 34, No. 4, July 1998, pp.1192-1194
[27] G. Phadke and J. S. Thorp, Computer Relaying for Power Systems, Research Studies Press Ltd., 1988, pp. 185-186.
[28] Y. C. Kang, J. K. Park, S. H. Kang, A. T. John and R. K. Aggarwal, “An algorithm for compensation the secondary current of current transformer,” IEEE Transactions on Power Delivery, Vol. 12, Jan. 1997, pp. 116-124.
[29] T. Bunyagul, P. Crossley and P. Gale, “ Overcurrent protection using signals derived from saturated measurement CTs,” IEEE Power Engineering Society Summer Meeting, Vancouver, BC, Canada, July, 2001.
[30] C. F., “An impedance-based CT saturation detection algorithm for bas-bar differential protection,” IEEE Transactions on Power Delivery, Vol. 16, Oct. 2001, pp. 468–472.
[31] J. Pan, K. Vu and Y. Hu, “An Efficient Compensation Algorithm for Current Transformer Saturation Effects,” IEEE Transactions on Power Delivery, Vol. 19, No. 4, October 2004, pp. 1623-1628.
[32] M. M. Mansour and G.W. Swift, “A Multi-Microprocessor Based Traveling Wave Relay - Theory and Realization,” IEEE Transactions on Power Delivery, vol. 1, no. 1, January 1986, pp.272-279.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔