(3.238.186.43) 您好!臺灣時間:2021/02/25 02:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林泓瑋
研究生(外文):Hung-Wei Lin
論文名稱:環形貧油火焰特性與注入空氣共伴流之影響
論文名稱(外文):Characteristics of annular lean flame and effects of the injection of air co-flow
指導教授:楊鏡堂楊鏡堂引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:62
中文關鍵詞:貧油燃燒環形火焰鈍體穩焰空氣共伴流駐焰
外文關鍵詞:Lean combustionAnnular flameBluff-body stabilizationAir co-flowFlame holding
相關次數:
  • 被引用被引用:6
  • 點閱點閱:120
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文探討不同當量比與出口流速下的環形貧油甲烷火焰特性,並提出注入空氣共伴流來改造火焰型態的設計理念,以大幅改善貧油燃燒之駐焰性能。研究分析上透過燃燒流場的火焰影像、流場可視化、高速PIV量測分析(1000, 2000 fps)與溫度分布來解析火焰型態與駐焰的機制。
結果顯示改變貧油燃氣的當量比(φmid=0.5–0.95)與出口流速(Umid=0.5–4.0 m/s)可歸納出環形貧油火焰的三種特性,第一特性是從燃燒狀況良好的錐焰(cone flame)到熄滅(extinguishment)之前會有半錐焰(half-cone flame)、飄焰(lift-off flame)的過渡區間,在操作燃燒器時,透過火焰外觀即能判斷燃燒反應的強弱。第二特性是貧油可燃極限會隨著燃氣出口速度的不同而改變,研究結果中最低的貧油可燃極限達0.52,發生在燃氣出口速度為1 m/s時,此時火焰面上的質量傳遞(往下游)與熱量傳遞(往上游)達到最佳平衡。第三特性是其燃燒流場包含三種緊密互動的週期性變化:火焰的內外擺盪、迴流區的大小變動、週期性的縮頸(necking)現象。注入空氣共伴流的概念是在環形貧油火焰瀕臨熄滅前,即火焰型態為半錐焰或飄焰的情形下,將空氣共伴流注入火焰的內側或外側,以流場來改變火焰型態。研究驗證顯示在火焰外側注入空氣共伴流且Uout /Umid 大於0.3–0.7 (依燃氣出口速度Umid而定),因燃氣迴流至兩環噴流之間的低壓區形成共伴迴流結構,使燃氣出口附近區域的流場與溫度分布改變,進而促使火焰型態由半錐焰轉變為鬱金香焰(tulip flame),顯著地強化燃燒反應與駐焰性能。如此僅利用空氣共伴流而不需添加額外的高成本物質或燃料即能改造火焰結構,使貧油燃燒反應更強烈且穩定。


The characteristics of annular lean methane flames with different equivalence ratios(φmid=0.5–0.95) and outlet flow velocities(Umid=0.5–4.0 m/s), and the effects of the injection of air co-flow are experimentally studied in a bluff-body multi-ring burner by flame image, flow path line, high speed PIV(1000, 2000 fps) and temperature mea-surement.
Result shows that annular lean flames can be classified into four modes: cone flame, half-cone flame, lift-off flame, and extinguishment. Combustion is strong and efficient at cone flame mode, and then gets weaker through half-cone flame, lift-off flame and finally to extinguishment. In order to enhance chemical reaction in weak combustion mode such as half-cone flame mode, there is no need to add extra materials or fuel, just injecting air co-flow with velocity ratio Uout /Umid > 0.3-0.7(depending on reactant flow velocity Umid) around the outer side of annular lean flame can promote chemical reaction and make the flame transfer into a more stabilized mode – tulip flame.


口試委員會審定書....................i
誌謝................................ii
摘要................................iii
Abstract............................iv
目錄................................v
圖表目錄............................viii
符號說明............................xi
第一章 前言.........................1
1.1 研究背景...................1
1.2 研究動機與願景.............1
第二章 文獻回顧.....................3
2.1 燃燒簡介...................3
2.1.1 燃燒模式..............3
2.1.2 可燃極限..............5
2.1.3 化學動力學基礎........5
2.1.4 火焰傳播..............7
2.2 貧油燃燒特性...............8
2.3 貧油燃燒的改善.............9
2.3.1 添加惰性氣體..........9
2.3.2 添加活性氣體..........9
2.3.3 觸媒燃燒..............10
2.3.4 火焰交互作用..........11
2.3.5 鈍體穩焰燃燒器........12
2.4 文獻總結...................16
第三章 研究方法.....................17
3.1 三環燃燒器的構造...........18
3.2 燃氣的供給.................19
3.2.1 燃料特性..............19
3.2.2 氣體流量的控制........20
3.2.3 當量比................21
3.3 流速的量測.................23
3.3.1 PIV原理簡介...........23
3.3.2 PIV實驗架設...........23
3.3.3 PIV影像的流速計算.....25
3.4 溫度的量測.................27
第四章 結果與討論...................30
4.1 環形貧油火焰特性...........30
4.1.1 火焰型態的歸納........30
4.1.2 燃燒流場可視化........34
4.1.3 燃燒流場的週期性變動..37
4.2 注入空氣共伴流的影響.......45
4.2.1 火焰外觀的變化........45
4.2.2 燃燒流場可視化........46
4.2.3 火焰轉變的條件........48
4.3 火焰與空氣共伴流的交互作用.50
4.3.1 PIV速度場.............50
4.3.2 溫度量測..............54
4.4 兩環火焰的交互作用.........55
第五章 結論.........................58
參考文獻............................61

Deshmukh, S. R. and Vlachos, D. G., 2007, “A reduced mechanism for methane and one-step rate expressions for fuel-lean catalytic combustion of small alkanes on noble metals,” Combustion and Flame, vol. 149, pp. 366–383.
Esquiva–Dano, I., Nguyen, H. T. and Escudie, D., 2001, “Influence of a bluff-body’s shape on the stabilization regime of non-premixed flames,” Combustion and Flame, vol. 127, pp. 2167–2180.
Gelin, P. and Primet, M., 2002, “Complete oxidation of methane at low tempera-ture over noble metal based catalysts: a review,” Applied Catalysis B: Environmen-tal,vol. 39, pp. 1–37.
Griffin, T., Weisenstein, W., Scherer, V. and Fowles, M., 1995, “Palla-dium-catalyzed combustion of methane: Simulated gas turbine combustion at atmos-pheric pressure,” Combustion and Flame, vol. 101, pp. 81–90.
Hu, E., Huang, Z., He, J., Jin, C. and Zheng, J., 2009, “Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames,” International Journal of Hydrogen Energy, vol. 34, pp. 4876–4888.
Hui, K. S., Chao, Y. H., Kwong, C. W. and Wan, M. P., 2008, “Use of mul-ti-transition-metal-ion-exchanged zeolite 13X catalysts in methane emissions abate-ment,” Combustion and Flame, vol. 153, pp. 119–129.
Jackson, G. S., Sai, R., Plaia, J. M., Boggs, C. M. and Kiger, K. T., 2003, “Influ-ence of H2 on the response of lean premixed CH4 flames to high strained flows,” Com-bustion and Flame, vol.132, pp. 503–511.
Kimoto, K., Shiraishi, I. and Matsumoto, R., 1981, “Structure of turbulent jet flames stabilized in annular air jet,” Combustion Science and Technology, vol. 25, pp. 31–41.
Kuo, K. K., 1986, Principles of Combustion, John Wiley & Sons Inc., New York.
Law, C. K., 2006, Combustion Physics, Cambridge University Press, New York.
Law, C. K. and Egolfopoulos, F. N., 1992, “A unified chain-thermal theory of fundamental flammability limits,” Twenty-Fourth Symposium (International) on Com-bustion, The Combustion Institute, Pittsburgh, PA, pp. 137.
Lin, H. C., Cheng, T. S., Chen, B. C., Ho, C. C. and Chao, Y. C., 2009, “A com-prehensive study of two interactive parallel premixed methane flames on lean combus-tion,” Proceedings of the Combustion Institute, vol. 32, pp. 995–1002.
Mallard, E. and Le Chatelier, H. L., 1883, Annals of Mines, vol. 4, pp. 379–568.
Roquemore, W. M., Tankin, R. S., Chin, H. H. and Lottes, S. A., 1986, “A study of a bluff-body combustor using laser sheet lighting,” Experiments in Fluids, vol. 4, pp. 205–213.
Rudham, R. and Sanders, M.K., 1972, “The catalytic properties of zeolite X con-taining transition metal ions : Part 2—Methane oxidation,” Journal of Catalysis, vol. 27, pp. 287–292.
Sahu, K. B., Kundu, A., Ganguly, R. and Datta, A., 2009, “Effects of fuel type and equivalence ratios on the flickering of triple flames,” Combustion and Flame, vol. 156, pp. 484–493.
Schlegel, A., Benz, P., Griffin, T., Weisenstein, W. and Bockhorn, H., 1996, “Cat-alytic stabilization of lean premixed combustion: Method for improving NOx emissions,” Combustion and Flame, vol. 105, pp. 332–340.
Seo, Y. S., Kang, S. K. and Shin, H. D., 1999, “Catalytic combustion of lean pre-mixed mixture in catalytically stabilized thermal combustor,” Combustion Science and Technology, vol. 145, pp. 17–35.
Shahamiri, S. A. and Wierzba, I., 2009, “Simulation of catalytic oxidation of lean hydrogen–methane mixtures,” Hydrogen Energy, vol. 34, pp. 5785–5794.
Wu, C. Y., Chao, Y. C., Cheng, T. S., Chen, C. P. and Ho, C. T., 2009, “Effects of CO addition on the characteristics of laminar premixed CH4/air opposed-jet flames,” Combustion and Flame, vol. 156, pp. 362–373.
Yu, G., Law, C. K. and Wu, C. K., 1986, “Laminar flame speeds of hydrocarbon + air mixtures with hydrogen addition,” Combustion and Flame, vol. 63, pp. 339–347.
阮文祺,2008,三環燃燒器搭配非單一當量比之貧油燃燒研究,國立清華大學動力機械工程學系碩士論文。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔