(3.239.159.107) 您好!臺灣時間:2021/03/08 20:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張敬
研究生(外文):Ching Chang
論文名稱:槽流中拉格朗日相關結構的拉伸與摺疊效應
論文名稱(外文):Stretching and folding of Lagrangian coherent structure in cavity flows
指導教授:伍次寅
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:50
中文關鍵詞:凹槽內部流場拉格朗日相關結構李亞普諾夫指數法
外文關鍵詞:cavity flowsLagrangian coherent structurefinite-time Lyapunov exponent
相關次數:
  • 被引用被引用:1
  • 點閱點閱:322
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
對一個廣義的非穩態流場(general unsteady flow),其內部隨著時間的變動,會發展出一些獨特的結構,稱為相關結構(coherent structure)。相關結構在一般流體力學慣用的歐拉(Eulerian)描述下的物理量,如速度場、壓力場、渦度等等,缺乏一個明確的定義標準,因此會面臨定義上的困難。在動態系統理論中,則提供了有力的工具,在狀態空間中的鞍點具有兩種獨特的流形:穩定與不穩定流形(stable & unstable manifolds),在穩定流形上的系統軌跡會互相靠近,而其附近的軌跡會互相發散;不穩定流形上的軌跡會互相發散,其附近的軌跡互相靠近。我們在流場中放入粒子,然後追蹤其在流場中的軌跡,藉由上述穩定與不穩定流形將軌跡區隔成不同動態區域的特性,可將其近似為相關結構的邊界,進而觀察出流場中的相關結構。因為利用粒子追蹤的觀點,所以稱為拉格朗日相關結構(Lagrangian coherent structure, LCS)。
本文採用有限時間李亞普諾夫指數(finite-time Lyapunov exponent, FTLE)法,計算凹槽內部流場(cavity flow)中每個粒子在一段有限時間[0,T]的軌跡,並求得每條軌跡在此段時間內,與附近軌跡之間彼此的最大形變量,取對數(logarithm)後為FTLE值 σ_0^T,並以 σ_0^T的局部最大值做為近似的LCS邊界。流場資料的取得採用雙時步(dual time step)虛擬壓縮性(pseudo-compressibility),配合有限體積(finite volume)法來求解二維納維爾-史托克斯方程組(2D Navier-Stokes equations)。並在流場中加入染料,觀察在其中混合傳輸的效果,並與FTLE法近似得到的LCS邊界做比較。得到的結果可作為研究流場中動態行為,如混合、傳輸等物理現象的依據。


For a general unsteady flow, there are some unique geometry patterns that developed by the flow field as time evolution. These special structures are called “coherent structures”. In the fluid mechanics, the properties like velocity, pressure, vorticity etc., are described from the Eulerian viewpoint. The lack of an unambiguous value to define which flow region is coherent makes it difficult to locate the coherent structure using the Eulerian properties. The dynamical systems theory can provide some useful concepts to approximate the coherent structure in flows: the saddle point and its stable and unstable manifolds in the state space. For the stable manifold, it converses the trajectories on it and repels the trajectories nearby; for the unstable one, it disperses the trajectories on it and attracts the trajectories nearby. The stable and unstable manifolds play crucial roles of the boundaries that divide distinct dynamical regions. With the above ideas, we can calculate the particles’ trajectory in flows and use the stable and unstable manifolds as the approximation of the coherent structure boundaries.
Due to the particle-base of description, the coherent structures are also called “Lagrangian coherent structures” (LCS).
Our research using the “finite-time Lyapunov exponent method” applies on the cavity flow. We calculate each particle’s trajectories in the flow field over the time interval [0, T] and obtain each trajectory’s maximum dispersion with its nearby trajectories. After taking logarithm on the maximum dispersion, we get the finite-time Lyapunov exponent (FTLE) σ_0^T and plot the its contour over the domain. The local maximum values of the FTLE could be approximate as the LCS boundaries. The velocity data of the cavity flow is obtained by the CFD solver, which uses the finite volume method to solve the 2D Navier-Stokes equations with the dual time steps and the pseudo-compressibility techniques. We also put some virtual dyes in flow to observe their evolution with flow field and compare the distribution patterns with the LCS boundaries from the FTLE approximation. The result provides some clues to the mixing phenomenon and particle transport in the unsteady flows.


口試委員會審訂書........................................ i
致謝.................................................... ii
中文摘要................................................ iii
英文摘要................................................ iv
目錄.................................................... v
圖目錄.................................................. vii
表目錄.................................................. ix

第一章 導論 ........................................... 1
第二章 動態系統 ....................................... 3
2.1 狀態空間與軌跡 ............................. 3
2.2 固定點與穩定性 ............................. 5
2.3 極限循環與龐可瑞切面 ....................... 6
2.4 鞍點與穩定、不穩定流形 ..................... 8
2.5 同宿糾纏(Homoclinic tangle) ....................... 10
第三章 流場中的動態行為 .............................. 12
3.1 觀察座標 .................................. 12
3.1.1 歐拉描述 ........................ 12
3.1.2 拉格朗日描述 .................... 13
3.2 拉格朗日粒子追蹤 .......................... 14
3.3 拉格朗日相關結構 .......................... 15
3.4 拉伸摺疊與混合 ............................ 16
3.5 定位LCS的方法 ............................. 17
第四章 有限時間李亞普諾夫指數法 ...................... 19
4.1 理論基礎 .................................. 19
4.1.1 軌跡的定義與條件 ................ 19
4.1.2 FTLE ............................ 20
4.2 數值方法 .................................. 22
第五章 凹槽內部流場的LCS ............................. 24
5.1流場的數值解 ............................... 24
5.2 FTLE法運用於內部流場 ...................... 25
5.2.1數值誤差對FTLE的影響 ............. 25
5.2.2 運用上的修正 .................... 27
5.3結果討論 ................................... 29
第六章 結語 .......................................... 47
6.1 結論 ...................................... 47
6.2 未來展望 .................................. 47
參考文獻 .............................................. 48


Aref, H.(1984) “Stirring by chaotic advection.” J. Fluid Mech. 143 :1-21

Bowman, K.P.(1999) “Manifold Geometry and Mixing in Observed Atmospheric Flows.” http://geotest.tamu.edu/userfiles/213/Manifold%20geometry.pdf

Devaney, R.L.(1986) “An Introduction to Chaotic Dynamical Systems.” the Benjamin/Cummings Publishing Company, Inc.

Garth, C. and Li, G.-S. and Tricoche, X. and Hansen, C.D. and Hagen, H.(2009) “Visualization of Coherent Structures in Transient 2D Flows.” Topology-Based Methods in Visualization II, Springer Berlin Heidelberg.

Haller, G. and Poje, A.C.(1999) “Finite-time transport in aperiodic flows.” Physica D 119 :352-380

Haller, G.(2000) “Finding finite-time invariant manifolds in two-dimensional velocity fields.” Chaos 10, NO.1 :99-108

Haller, G. and Yuan, G.(2000) “Lagrangian coherent structures and mixing in two-dimensional turbulence.” Physica D 147 :352-370

Haller, G.(2001) “Distinguished material surfaces and coherent structures in 3d fluid flows.” Physica D 149 :248-277

Haller, G.(2002) “Lagrangian coherent structures from approximate velocity data.” Phys. Fluids A 14 :1851-1861

Hilborn, R.C.(2000) “Chaos and Nonlinear Dynamics: an introduction for scientists andengineers.” OXFORD University Press.


Jeong, J. and Hussain, F.(1995) “On the identification of a vortex.” J. Fluid Mech. 285 :69-94

Lekien, F. and Leonard, N.(2004) “Dynamically consistent Lagrangian coherent structures.” AIP: 8th Experimental Chaos Conference vol. 742 :132-139

Leong, C.W. and Ottino, J.M.(1989) “Experiments on mixing due to chaotic advection in a cavity.” J. Fluid Mech. 209 :463-499

Mathur, M. and Haller, G. and Peacock, T. and Ruppert-Felsot, J.E. and Sienney,H.L.(2007) “Uncovering the Lagrangian Skeleton of Turbulence.” Physical Review Letters 98, 144502(2007)

Mezic, I. and Wiggins, S.(1999) “A method for visualization of invariant sets of dynamical systems based on the ergodic partition.” Chaos 9 :213-218

Munson, B.R. and Young, D.F. and Okiishi, T.H.(2006) “Fundamentals of Fluid Mechanics.” John Wiley & Sons, Ltd.

Poje, A.C. and Haller, G.(1999) “Geometry of cross-stream mixing in a doublegyre ocean model.” J. Phys. Oceanogr. 8 :1649-1665

Shadden, S.C. and Lekien, F. and Marsden, J.E.(2005) “Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows.” Physica D 212 :271–304

Tang, W. and Chan, P.W. and Haller, G.(2010) “Accurate extraction of Lagrangian coherent structures over finite domains with application to flight data analysis over Hong Kong International Airport.” Chaos 20, 017502(2010)

Voth, G.A. and Haller, G. and Gollub, J.P.(2002) “Experimental Measurements of Stretching Fields in Fluid Mixing.” Physical Review Letters 88, 254501(2002)

楊世昌,民國八十七年六月(1998)“黏性不可壓縮流之高解析算則的發展及其應用”國立臺灣大學機械工程學研究所博士論文

馮建忠,民國八十九年十月(2000)“脈衝流於非等截徑(動脈血管)中之流場模擬”國立臺灣大學機械工程學研究所博士論文


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔