(54.236.62.49) 您好!臺灣時間:2021/03/08 01:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:官瑞明
研究生(外文):Ruei-Ming Guan
論文名稱:手輪馬達電動輪椅之混合質子交換膜燃料電池電力管理系統設計
論文名稱(外文):Design of Hybrid Power Management System with Proton Exchange Membrane Fuel Cell for an Electrical Wheelchair powered by Rim Motors
指導教授:陽毅平陽毅平引用關係
指導教授(外文):Yee-Pien Yang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:149
中文關鍵詞:燃料電池能量管理電力鏈磷酸亞鐵鋰電池
外文關鍵詞:fuel cellenergy managementpowertrainLiFePO4
相關次數:
  • 被引用被引用:1
  • 點閱點閱:162
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,燃料電池車輛被視為下一代電動車輛的主要發展重點之一,其應用愈來愈廣泛。在考慮燃料經濟性與性能的條件下,最被廣泛使用的組合為燃料電池與二次電池的結合使用。典型的混合燃料電池電力鏈可根據燃料電池與二次電池組功率分配策略的不同,而分為串聯式與並聯式燃料電池電力鏈。本研究所預設之應用為手輪馬達電動輪椅,其對能源系統的要求與輕型電動車輛相同,在輕型電動車輛之中,對能源系統的重量與體積皆遠比一般電動車輛來得嚴苛,所裝載之能源系統必須能在儘可能地減少重量與體積的條件下,仍可提供足夠的電能以保持一定的駕駛性能,而典型的串聯式與並聯式燃料電池電力鏈所組成之能源系統無法完全滿足此需求,並且其相對應的電力管理策略亦存在對燃料電池的輸出功率波動過大以及二次電池組造成壽命衰減與性能快速下降的問題,故本研究設計一混合燃料電池電力鏈結構,並搭配相對應的電力管理策略,考慮手輪馬達電動輪椅的行駛工況與平均功率,選擇適當的燃料電池與二次電池組,將此電力系統以Matlab SimPowerSystems模組來模擬,並與典型串聯式與並聯式燃料電池電力鏈作比較,討論改善效果。由模擬結果顯示,本論文所設計的燃料電池電力鏈對燃料電池電力鏈的性能要求較小,燃料電池的操作功率亦較為固定,並且在二次電池組的充電次數上減少了96%~98%,延長二次電池組的壽命。

In recent years, fuel cell vehicles are becoming the most focus technology in the electric vehicles. Considering the fuel economy, the combination of fuel cells and secondary batteries is most widely used. The classical hybrid fuel cell powertrains could be classified into two types: series and parallel. The default application of this research is the electric wheelchair powered by rim motors. The limitation for energy storage system in the electric wheelchair is more critical than in general electric vehicles. The size and weight should be reasonable reduced with keeping enough drive ability. But the classical hybrid fuel cell powertrains could not satisfy the request. Also, the power management might cause the large variation of fuel cell output power and the decrease of the cycle life of batteries. In this research, a novel hybrid fuel cell powertrain and power management strategies were designed to improve this drawback and reduced the size and weight of fuel cells and batteries with reasonable size by load power and driving cycle analysis. The proposed and classical fuel cell powertrain were simulated with Matalb SimPowerSystems and compared simulation results to evaluate the improvements. From simulation results, the power requirement of fuel cells in proposed hybrid fuel cell powertrain is smaller than in classical fuel cell powertrain. The output power of fuel cells is nearly constant, so the size of fuel cells could be reasonably reduced and easy to control in future. Furthermore, the charging times of secondary batteries were also reduced 96%~98% compared with classical fuel cell powertrains.

口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract v
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 5
1.3 研究目的 10
1.4 研究方法 12
第2章 電池特性 13
2.1 電池簡介 14
2.2 電極電化學 15
2.3 電極熱力學 19
2.4 電力參數 20
2.4.1 庫侖容量 20
2.4.2 殘電量 21
2.4.3 能量密度 22
2.4.4 功率密度 22
2.5 常見二次電池種類 23
2.5.1 鉛酸電池 23
2.5.2 鎳氫電池 24
2.5.3 鋰電池 24
2.5.3.1 鋰電池 24
2.5.3.2 鋰離子電池 25
第3章 燃料電池特性 29
3.1 原理 29
3.2 電壓與效率 30
3.3 燃料利用率 34
3.4 系統特性 36
3.5 燃料電池種類 39
3.5.1 質子交換膜燃料電池 41
第4章 混合燃料電池電力鏈設計 45
4.1 混合動力鏈簡介 45
4.2 常見混合燃料電池電力鏈 49
4.2.1 串聯式混合電力鏈 50
4.2.2 並聯式混合電力鏈 52
4.3 混合燃料電池電力鏈設計 53
4.3.1 混合燃料電池電力鏈結構 53
4.3.2 電力需求 54
4.3.2.1 平均負載功率 54
4.3.2.2 操作區間 58
4.3.2.3 電池組選擇 59
第5章 電力管理系統設計 65
5.1 系統結構 65
5.2 磷酸亞鐵鋰電池管理系統設計 65
5.2.1 電池管理系統概述 65
5.2.2 充電策略 66
5.2.3 放電策略 68
5.2.4 殘存電量估測 68
5.3 質子交換膜燃料電池系統 70
5.3.1 質子交換膜燃料電池操作參數與功率 70
5.3.2 直流-直流轉換模組 75
5.4 電力管理控制策略 76
第6章 電力管理系統模擬 87
6.1 質子交換膜燃料電池模型 88
6.2 磷酸亞鐵鋰電池模型 93
6.3 負載模型 98
6.4 電力管理系統模擬 101
6.4.1 電力管理系統分析 101
6.4.2 能量管理策略模擬與結果 108
6.4.3 電力系統效能模擬與比較 113
6.4.4 二次電池組使用情境模擬與結果 116
6.4.5 行駛工況模擬與結果 125
第7章 結論與未來展望 129
7.1 結論 129
7.2 未來展望 131
附錄 133
A.1影響電池的因素 133
A.2 二次電池常見充電方法 141
A.3殘存電量估測 145
參考文獻 149

[1]M. Ehsani, Modern Electric, Hybrid Electric, and Fuel Cell Vehicles : Fundamentals, Theory, and Design. Boca Raton: CRC Press, 2005.
[2]J. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd ed. Chichester, West Sussex: J. Wiley, 2003.
[3]G. Pede, A. Iacobazzi, S. Passerini, A. Bobbio, and G. Botto, "FC vehicle hybridisation: an affordable solution for an energy-efficient FC powered drive train," Journal of Power Sources, vol. 125, pp. 280-291, 2004.
[4]P. Rodatz, O. Garcia, L. Guzzella, F. Buchi, M. Bartschi, A. Tsukada, P. Dietrich, R. Kotz, G. Scherer, and A. Wokaun, "Performance and operational characteristics of a hybrid vehicle powered by fuel cells and supercapacitors," Society of Automotive Engineers, pp. 2003-01-0418, 2003.
[5]G. Dawei, J. Zhenhua, and L. Qingchun, "Performance comparison of different fuel cell vehicle power trains," presented at the IEEE Vehicle Power and Propulsion Conference, China, 2008.
[6]J. Bauman and M. Kazerani, "A Comparative Study of Fuel-Cell-Battery, Fuel-Cell-Ultracapacitor, and Fuel-Cell-Battery-Ultracapacitor Vehicles," IEEE Transactions on Vehicular Technology, vol. 57, pp. 760-769, 2008.
[7]J. Wang, Y. Chen, and Q. Chen, "A fuel cell city bus with three drivetrain configurations," Journal of Power Sources, vol. 159, pp. 1205-1213, 2006.
[8]M. Ouyang, L. Xu, J. Li, L. Lu, D. Gao, and Q. Xie, "Performance comparison of two fuel cell hybrid buses with different powertrain and energy management strategies," Journal of Power Sources, vol. 163, pp. 467-479, 2006.
[9]C. Sapienza, L. Andaloro, F. Matera, G. Dispenza, P. Cret , M. Ferraro, and V. Antonucci, "Batteries analysis for FC-hybrid powertrain optimization," International Journal of Hydrogen Energy, vol. 33, pp. 3230-3234, 2008.
[10]P. Corbo, F. Corcione, F. Migliardini, and O. Veneri, "Experimental study of a fuel cell power train for road transport application," Journal of Power Sources, vol. 145, pp. 610-619, 2005.
[11]P. Corbo, F. Migliardini, and O. Veneri, "Performance investigation of 2.4 kW PEM fuel cell stack in vehicles," International Journal of Hydrogen Energy, vol. 32, pp. 4340-4349, 2007.
[12]G. Guizzi, M. Manno, and M. De Falco, "Hybrid fuel cell-based energy system with metal hydride hydrogen storage for small mobile applications," International Journal of Hydrogen Energy, vol. 34, pp. 3112-3124, 2009.
[13]P. Corbo, F. Migliardini, and O. Veneri, "An experimental study of a PEM fuel cell power train for urban bus application," Journal of Power Sources, vol.181, pp. 363-370 , 2007.
[14]P. Thounthong, S. Rael, and B. Davat, "Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle," Journal of Power Sources, vol. 158, pp. 806-814, 2006.
[15]V. Paladini, T. Donateo, A. de Risi, and D. Laforgia, "Control Strategy Optimization of a Fuel-Cell Electric Vehicle," Journal of Fuel Cell Science and Technology., vol. 5, pp. 21004, 2008.
[16]P. Corbo, F. Corcione, F. Migliardini, and O. Veneri, "Energy management in fuel cell power trains," Energy Conversion and Management, vol. 47, pp. 3255-3271, 2006.
[17]K. Jeong, W. Lee, and C. Kim, "Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics," Journal of Power Sources, vol. 145, pp. 319-326, 2005.
[18]D. Gao, Z. Jin, and Q. Lu, "Energy management strategy based on fuzzy logic for a fuel cell hybrid bus," Journal of Power Sources, vol. 185, pp. 311-317, 2008.
[19]M. Tekin, D. Hissel, M. Pera, and J. Kauffmann, "Energy-Management Strategy for Embedded Fuel-Cell Systems Using Fuzzy Logic," IEEE Transactions on Industrial Electronics, vol. 54, pp. 595-603, 2007.
[20]P. Rodatz, G. Paganelli, A. Sciarretta, and L. Guzzella, "Optimal power management of an experimental fuel cell/supercapacitor-powered hybrid vehicle," Control Engineering Practice, vol. 13, pp. 41-53, 2005.
[21]M. Kim and H. Peng, "Power management and design optimization of fuel cell/battery hybrid vehicles," Journal of Power Sources, vol. 165, pp. 819-832, 2007.
[22]A. Vahidi and H. Peng, "Current management in a hybrid fuel cell power system: A model-predictive control approach," IEEE Transactions on Control Systems Technology, vol. 14, pp. 1047-1057, 2006.
[23]A. Schell, H. Peng, D. Tran, E. Stamos, C. Lin, and M. Kim, "Modelling and control strategy development for fuel cell electric vehicles," Annual Reviews in Control, vol. 29, pp. 159-168, 2005.
[24]D. Linden and T. B. Reddy, Handbook of Batteries, 3rd ed. New York: McGraw-Hill, 2002.
[25]H. K. Messerle, Energy Conversion Statics. New York,: Academic Press, 1969.
[26]陳全世, 先進電動汽車技術. 北京: 化學工業出版社, 2007.
[27]陳全世、仇斌、謝起成、, 燃料電池電動汽車. 北京: 清華大學出版社, 2005.
[28]PSI International Semiconductor Corporation. Website: http://www.psi.com.tw/
[29]A123 Systems, Website: http://www.a123systems.com/
[30]V-INFINITY VHK200W-Q24-S12, Website: http://www.v-infinity.com/.
[31]M. Souleman Njoya, O. Tremblay, and L. Dessaint, "A Generic Fuel Cell Model for the Simulation of Fuel Cell Vehicles."
[32]R. P. O''Hayre, Fuel Cell Fundamentals. Hoboken, NJ: John Wiley & Sons, 2006.
[33]R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, Mass.: Kluwer Academic, 2004.
[34]張天錫, 電力電子學. 台北市: 東華書局, 2004.
[35]Matlab Help&Central, Website: http://www.mathworks.com/matlabcentral/.
[36]O. Tremblay, L. Dessaint, and A. Dekkiche, "A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles."
[37]Ovonics Solid Hydrogen Storage canister, Website: http://ovonics.com/ib_hy_hydrogen_portablecanisters.cfm.
[38]張洪為, "鋰離子電池原理及充電管理的設計探討," High Performance Analog Asia Marketing Development 2004.
[39]徐茂恩, 質子交換膜燃料電池之應用田口工程實驗設計法進行參數最佳化選取, 碩士, 機械工程學所, 國立臺灣大學, 台北市, 2009.
[40]F. Barbir, PEM Fuel Cells : Theory and Practice. Amsterdam ; London: Elsevier Academic, 2005.
[41]C. C. Chan and K. T. Chau, Modern Electric Vehicle Technology. Oxford ; New York: Oxford University Press, 2001.
[42]J. Larminie and J. Lowry, Electric Vehicle Technology Explained. Chichester: Wiley, 2003.
[43]M. Nehrir and C. Wang, Modeling and Control of Fuel Cells : Distributed Generation Applications. Hoboken, N.J.: Wiley, 2009.
[44]C. Spiegel, PEM Fuel Cell Modeling and Simulation Using Matlab. Boston: Academic Press/Elsevier, 2008.
[45]黃鎮江, 燃料電池. 台北市: 全華圖書, 2005.
[46]溫武義, 燃料電池技術. 台北市: 全華圖書, 2004.
[47]P. Corbo, F. Corcione, F. Migliardini, and O. Veneri, "Experimental assessment of energy-management strategies in fuel-cell propulsion systems," Journal of Power Sources, vol. 157, pp. 799-808, 2006.
[48]E. Faggioli, P. Rena, V. Danel, X. Andrieu, R. Mallant, and H. Kahlen, "Supercapacitors for the energy management of electric vehicles," Journal of Power Sources, vol. 84, pp. 261-269, 1999.
[49]A. Folkesson, C. Andersson, P. Alvfors, M. Alakula, and L. Overgaard, "Real life testing of a hybrid PEM fuel cell bus," Journal of Power Sources, vol. 118, pp. 349-357, 2003.
[50]W. Gao, "Performance comparison of a fuel cell-battery hybrid powertrain and a fuel cell-ultracapacitor hybrid powertrain," IEEE Transactions on Vehicular Technology, vol. 54, pp. 846-855, 2005.
[51]X. Li, L. Xu, J. Hua, X. Lin, J. Li, and M. Ouyang, "Power management strategy for vehicular-applied hybrid fuel cell/battery power system," Journal of Power Sources, vol. 191, pp. 542-549, 2009.
[52]P. Mizsey and E. Newson, "Comparison of different vehicle power trains," Journal of Power Sources, vol. 102, pp. 205-209, 2001.
[53]V. Paladini, T. Donateo, A. de Risi, and D. Laforgia, "Super-capacitors fuel-cell hybrid electric vehicle optimization and control strategy development," Energy Conversion and Management, vol. 48, pp. 3001-3008, 2007.
[54]J. Pukrushpan, H. Peng, and A. Stefanopoulou, "Control-oriented modeling and analysis for automotive fuel cell systems," Journal of Dynamic Systems, Measurement, and Control, Transactiona of ASME , vol. 126, pp. 14-25, 2004.
[55]J. Pukrushpan, A. Stefanopoulou, and H. Peng, "Modeling and control for PEM fuel cell stack system," Proceeging of the American Control Conference, Transactiona of ASME , pp. 3117-3122, 2002.
[56]J. Pukrushpan, A. Stefanopoulou, and H. Peng, "Control of fuel cell breathing: Initial results on the oxygen starvation problem," IEEE Control Systems Magazine, vol. 24, pp. 30-46, 2004.
[57]L. Schlecht, "Competition and alliances in fuel cell power train development," International Journal of Hydrogen Energy, vol. 28, pp. 717-723, 2003.
[58]G. Suppes, "Plug-in hybrid with fuel cell battery charger," International Journal of Hydrogen Energy, vol. 30, pp. 113-121, 2005.
[59]J. Van Mierlo, P. Van den Bossche, and G. Maggetto, "Models of energy sources for EV and HEV: fuel cells, batteries, ultracapacitors, flywheels and engine-generators," Journal of Power Sources, vol. 128, pp. 76-89, 2004.
[60]S. Williamson, M. Lukic, and A. Emadi, "Comprehensive drive train efficiency analysis of hybrid electric and fuel cell vehicles based on motor-controller efficiency modeling," IEEE Transactions on power electronics, vol. 21, pp. 730-740, 2006.
[61]J. Qian, "Rechargeable Battery characteristics, safety, Charging and fuel gauges," Texas Instruments, Asia Tech Day, Taipei, 2009.
[62]I. Rectifier. IRFB3004PbF HEXFET POWER MOSFET, International Rectifier. Available: http://www.irf.com/
[63]F. Semiconductor. FDP8440 N-Channel PowerTrench MOSFET, Fairchild Semiconductor. Available: http://www.fairchildsemi.com/
[64]李興虎, 電動汽車概論. 北京: 北京理工大學出版社, 2005.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔