( 您好!臺灣時間:2021/03/07 23:49
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Ya-Ting Chang
論文名稱(外文):Study of Nozzle/Diffuser elements applied in Piezoelectric Proton Exchange Membrane Fuel Cells(PZT-PEMFCs)
指導教授(外文):Hsiao-Kang Ma
外文關鍵詞:PEMFCPiezoelectric devicebi-cellCurrent densityAspect ratioopen angle
  • 被引用被引用:1
  • 點閱點閱:165
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0

Previous studies of piezoelectric proton exchange membrane fuel cell with nozzle and diffuser (PZT-PEMFC-ND) have shown that a PZT device could solve flooding problems and improve cell performance. In this study, we discuss the performance of PZT-PEMFC-ND with different nozzle and diffuser geometry design. And a PZT-PEMFC-ND bi-cell with pseudo bipolar electrodes was developed to achieve a higher power output. This new design, with a reaction area of 4cm2, contains two cells with two outside anodes and two inside cathodes that share a common PZT vibrating device for pumping air flow. The experiment results show that a proper open angle of 10° and a proper aspect ratio(AR) of 5.63 could have a better cell performance. A larger open angle value will cause longer time of separation in one period. A larger AR of 11.25 and 16.88 induced a blocking phenomenon inside the diffuser element, and thus less air was sucked into the cathode chamber. This study also concludes that the innovative design of the PZT-PEMFC-ND bi-cell could reach the best performance of 0.27W/cm2 at the condition of AR5.63 and θ=10°. And the bi-cell can have a net power output of 0.84W at 60Hz.

致謝 I
摘要 II
Abstract III
章節目錄 V
圖目錄 VIII
表目錄 XI
符號表 X II
第一章 緒論 1
1.1前言 1
1.2 燃料電池簡介 2
1.2.1 燃料電池的基本原理 2
1.2.2 燃料電池的分類 2
1.2.3 燃料電池的特性 3
1.2.4 燃料電池反應所需之的氫氣、氧氣量 4
1.2.4 燃料電池的極化曲線 5
1.2.5 燃料電池之效率分析 6
1.3質子交換膜燃料電池(PEMFC) 7
1.4 新型壓電式質子交換膜燃料電池簡介 9
1.4.1 壓電效應與壓電材料 9
1.4.2微型泵(壓電泵)之分類 11
1.4.3漸縮/漸擴微型泵(Nozzle/Diffuser micro-pump) 11
1.4.4新型壓電式質子交換膜燃料電池 12
1.5 文獻回顧 13
1.6 研究目的 20
第二章 漸縮/漸擴元件之理論模式建立 22
2.1理論分析 22
2.1.1壓力損失係數(Pressure loss coefficiency) 22
2.1.2 體積流率 22
2.2 因次分析 27
2.3 數值模擬基本假設 28
2.4 壓電薄膜之理論建立 28
2.5 統御方程式 30
2.5.1 連續方程式 30
2.5.2 動量方程式 30
2.6 數值方法 30
2.6.1 套裝軟體CFD-RC介紹 30
2.6.2 有限體積法 31
2.6.3 SIMPLEC演算法則 32
2.7 物理模型 35
2.8 邊界與初始條件 35
2.8.1 邊界條件設定 35
2.8.2 初始條件設定 35
2.9 收斂標準 36
第三章 實驗設備與方法 37
3.1實驗設備與系統燃料電池測試系統 37
3.1.1燃料電池測試系統 37
3.1.2膜電極組(MEA) 37
3.1.3壓電片 38
3.2燃料電池組設計 38
3.3實驗步驟與方法 38
3.3.1燃料電池組裝與量測I-V curve 38
3.3.2 膜電極組活化 39
3.3.3 量測I-V curve 39
3.4 實驗操作參數 40
3.4.1 不同壓電振動頻率對燃料電池性能影響之實驗 40
3.4.2 操作溫度對燃料電池性能影響之實驗 41
3.4.3 不同漸縮/漸擴元件開口角度對燃料電池性能影響之實驗 41
3.4.4 不同Nozzle/Diffuser展弦比對燃料電池性能影響之實驗 41
3.4.5 雙電池組實驗 41
第四章 結果與討論 43
4.1陰極壓電振動頻率對燃料電池性能之影響 43
4.2操作溫度對燃料電池性能之影響 44
4.3陰極漸縮/漸擴元件幾何形狀對燃料電池性能之影響 44
4.3.1陰極漸縮/漸擴元件開口角度對燃料電池性能之影響 44
4.3.2陰極漸縮/漸擴元件展弦比對燃料電池性能之影響 45
4.4雙電池實驗 47
4.4.1 氫氣加濕溫度50℃之雙電池實驗 47
4.4.2 氫氣加濕溫度30℃之雙電池實驗 48
4.5 壓電式質子交換膜燃料電池之效率分析 50
4.6 壓電式質子交換膜燃料電池之功率轉換分析 50
第五章 結論與建議 52
5.1結論 52
5.2建議 53
參考文獻…. 54

1.K. Walter, “Science & Technology”, Lawrence Livermore National Laboratory, www.llnl.gov/str/Mitlit.html , 1997.
2.J. Larminie, A. Dicks, “Fuel Cell Systems Explained”, Wiley, Second Edition, pp.45-60,2003.
3.S. Shimoalee, S. Greenway, D. Spuckler, J. W. V. Zee, “Predicting water and current distribution in a commercial-size PEMFC”, Journal of Power Sources, 135, pp.79-87, 2004.
4.L. Smith, “Micromachined nozzles fabricated with a replicative method”, Conf Proc Micromechanics Europe 1990(MME), Berlin, Germany, pp.53-57, 1990.
5.M. M. Farooqui, A. G. R. Evans, “Microfabrication of submicron nozzles in silicon nitride”, Micro Electro Mechanical Systems ‘92(MEMS), pp.150-153, 1992.
6.E. Stemme, G. Stemme, “Valve-Less Fluid Pump”, Swedish Patent Appl. No. 9 300 604-7, 1993.
7.E. Stemme, G. Stemme, “A valveless diffuser/nozzle-based fluid pump”, Sensors and Actuators A , 39, pp.159-167,1993.
8.黃詩涵, “壓電式質子交換膜燃料電池研究分析”,國立台灣大學機械工程學研究所博士論文,2009.
9.A. Olsson, G. Stemme, E. Stemme, “Diffuser-element design investigation for valve-less pumps”, Sensors and Actuators, 57, pp.137-143, 1996.
10.A. Olsson, G. Stemme, E. Stemme, “Numerical and experiment studies of flat-walled diffuser elements for valve-less micro pump”, Sensors and Actuators, 84, pp.164-175, 2000.
11.A. T. Ahmadian, A. Mehrabian “Design optimization by numerical characterization of fluid flow through the valveless diffuser micropumps”, Journal of Physics: Conference Series, 34, pp.379-384, 2006.
12.K. S. Yang, I. Y. Chen, K. H. Chien, C. C. Wang, “A numerical study of the nozzle/diffuser micropump”, Journal of Mechanical Engineering Science, 222, pp.523-533, 2008.
13.A. Kazim, H. T. Liu, P. Forges, “Modeling of performance of PEM fuel cells with conventional”, Journal of Applied Electrochemistry , 29, pp.1409-1416, 1999.
14.E. Hontanon, M. J. Escudero, ”Optimization of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques”, Journal of Power Sources, 86, pp. 363-368, 2000.
15.S. Shimpalee, S. Dutta, J. W. Van-Zee, “Numerical Prediction of Local Temperature and Current Density in a PEM Fuel Cell”, IMECE, No. 2-6-3-2, 2000.
16.R. Jiang, D. Chu, “Stack design and performance of polymer electrolyte membrane fuel cells”, Journal of Power Sources, 93, pp.25-31, 2001.
17.P. W. Li, “The Performance of PEM fuel cells fed with oxygen through the free-convection mode”, Journal of Power Sources, 114, pp.63-69, 2003.
18.S. Shimoalee, S. Greenway, D. Spuckler, J.W. Van Zee, “Predicting water and current distribution in a commercial-size PEMFC”, Journal of Power Sources, 135, pp.79-87, 2004.
19.P. H. Chi, F. B. Weng, “Numerical Modeling of Proton Exchange Membrane Fuel Cell With Considering Thermal and Relative Humidity Effects on the Cell Performance”, Journal of Fuel cell Science and Technology, 3, pp.292-302,2006.
20.城立偉, “壓電可變式流道質子交換膜燃料電池之效率分析”, 國立台灣大學機械工程研究所碩士論文, 2007.
21.H. K. Ma, S. H. Huang, and Y. Z. Kuo, “A novel ribbed cathode polar design in piezoelectric proton exchange membrane fuel cells”, Journal of power sources, 185, pp.1151-1161, 2008.
22.S. H. Kim, H. Y. Cha, C. M. Miesse, J. H. Jang, Y. S. Oh and S. W. Cha, “Air-breathing miniature planar stack using the flexible printed circuit board as a current collector”, International Journal of Hydrogen Energy, 34, pp.459-466, 2009.
23.N. Bussayajarn, H. Ming, K. K. Hoong, W. Y. M. Stephen, C. S. Hwa, “Planar air breathing PEMFC with self-humidifying MEA and open cathode geometry design for portable applications”, International Journal of Hydrogen Energy, 34, pp.7761-7767, 2009.
24.W. Dai,H. Wang, X. Z. Yuan,J. J. Martin, D. Yang, J. Qiao, J. Ma, “A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cell”, International Journal of Hydrogen Energy, 34, pp.9461-6478, 2009.
25.黃育仁, “陽極流道對於壓電式質子交換膜燃料電池性能之影響”,國立台灣大學機械工程研究所碩士論文, 2009.
26.郭耀宗, “陰極流道對於壓電式質子交換膜燃料電池性能之影響”,國立台灣大學機械工程研究所碩士論文, 2009.
27.H. K. Ma, S. H. Huang, J. S. Wang, C. G. Hou, C. C. Yu., B.R. Chen, “Experimental study of a novel piezoelectric proton exchange membrane fuel cell with nozzle and diffuser ”, Journal of Power Sources, 195, pp.1393-1400, 2010.
28.F. M. White, “Fluid Mechanics”, McGraw-Hill, pp.332-339, 1986.
29.J. P. Van Doormaal and F. D. Raithby, “Enhancements of the SIMPLE method for tredicting incompressible fluid flows”, Numerical Heat Transfer, 7, pp.147-163, 1984.
30.J.H. Jang, H.C. Chiu, W.M. Yan, W.L. Sun, “Effects of operating conditions on the performances of individual cell and stack of PEM fuel cell”, Journal of Power Sources, 180 , pp.476–483, 2008.
31.W.M. Yan, X.D. Wang, S.S. Mei, X.F. Peng, Y.F. Guo, A. Su “Effects of operating temperatures on performance and pressure drops for a 256cm2 proton exchange membrane fuel cell: An experimental study”, Journal of Power Sources, 185, pp.1040–1048, 2008.
32.V. Singhal, S. V. Garimella and J. Y. Murthy, “Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps”, Sensors and Actuators A, 113, pp.226-235, 2004.
33.林昇佃 等人,“燃料電池:新世紀能源”, 滄海書局, 2004.
34.J. Larminie, A. Dicks, “Fuel Cell Systems Explained”, Wiley, Second Edition, pp.33,2003.

第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔