(3.235.108.188) 您好!臺灣時間:2021/02/25 07:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林毓書
研究生(外文):Yu-Shu Lin
論文名稱:腐蝕對2024鋁合金之機械性質影響
論文名稱(外文):The Effects On Mechanical Properties of 2024 Aluminum Alloy Due To Corrosion
指導教授:單秋成單秋成引用關係
指導教授(外文):Chow-Shing Shin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:137
中文關鍵詞:鋁合金2024-T3應力腐蝕腐蝕疲勞疲勞裂縫生長微型疲勞試片
外文關鍵詞:2024-T3 AluminumStress Corrosion CrackingCorrosion Fatiguefatigue crack growthminiature fatigue specimens
相關次數:
  • 被引用被引用:1
  • 點閱點閱:193
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋁合金2024-T3為目前廣泛使用的航太材料,優點為高強度、質輕,但具有低抗蝕性;本文乃以行政院飛航安全委員會調查之「機腹蒙皮77公分裂紋事故」為案例研究,探討「腐蝕」對於飛機蒙皮材料2024-T3鋁合金之材料機械性質的影響。實驗分別針對腐蝕的破壞機制:靜態腐蝕、應力腐蝕以及腐蝕疲勞進行實驗。在靜態腐蝕實驗中,會將蒙皮材料製作成標準拉伸試片,並透過設定不同的環境參數,將試片浸泡於各腐蝕環境參數中,而後對試片進行拉伸實驗求取其相對應的應力應變曲線,檢視腐蝕是否會對試片造成機械性質的改變,並探討各環境因素對蒙皮材料的強度影響程度。在應力腐蝕實驗中,由前述的環境因素加上固定的張應力,探討施加應力對於腐蝕破壞的影響。腐蝕疲勞的部份中,則是將蒙皮製做成標準疲勞試片以及微型疲勞試片,透過觀察裂縫生長,比較蒙皮在空氣中以及腐蝕環境中之裂縫生長速率的差異性,並比較標準疲勞試片與微型疲勞試片所反映出的數據結果之異同,以研究微型疲勞試驗機用於疲勞測試的可行性。

2024-T3 Aluminum alloy is a wildly-used material in aerospace, for it’s high strength and low density, but with a low-corrosive resistance. This study tries to find out the effects on mechanical properties of 2024-T3 Aluminum alloy due to corrosion, which is based on an accident “ CI 7552-77cm crack accident” investigated by Aviation Safety Council (ASC) . This experiment is separated into three parts: static corrosion, stress corrosion cracking and corrosion fatigue. In static corrosion, we prepare tensile specimens which are exposed to different corrosive environments, then construct the relative stress-strain curve after tensile test to check whether the tensile strength changes due to corrosion, and discuss how it has changed for different environment factors. In stress corrosion cracking, we introduce the “tensile stress” factor in addition to the previous corrosive environments, discuss the effects on mechanical properties under corrosive environments when the tensile stress is added. In corrosion fatigue, we prepare standard CT specimens and miniature fatigue specimens, then through observing the crack grows, compare the difference in crack growth rate between non-corrosive environments and corrosive environments, and compare the results between CT specimens and miniature specimens, as well, for checking the usage and practicability of miniature fatigue specimen testing.

口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 飛航事故簡介 1
1.3 研究目的 3
第二章 文獻回顧 9
2.1 腐蝕破壞機制 9
2.1.1 孔蝕(Pitting) 9
2.1.2 應力腐蝕(Stress Corrosion Cracking) 10
2.1.3 腐蝕疲勞(Corrosion Fatigue) 10
2.2 疲勞破壞文獻回顧 11
2.2.1 應力強度因子 11
2.2.2 Paris’ Law 12
2.2.3 裂縫封閉效應 13
2.2.4 Elber修正式 14
2.2.5 量測裂縫封閉 14
2.3 縮小試片尺寸的技術 15
第三章 實驗方法與程序 21
3.1 靜態腐蝕實驗 21
3.1.1 標準拉伸試片 21
3.1.2 靜態腐蝕環境參數設定 21
3.1.3 靜態腐蝕實驗設備與流程 22
3.2 應力腐蝕實驗 23
3.2.1 應力腐蝕試片與夾具 24
3.2.2 應力腐蝕環境參數設定 24
3.2.3 應力腐蝕實驗設備與流程 24
3.3 CT試片腐蝕疲勞實驗 25
3.3.1 疲勞CT試片 25
3.3.2 CT疲勞試片K值估算 26
3.3.3 CT試片腐蝕疲勞環境參數設定 26
3.3.4 CT試片腐蝕疲勞實驗設備與流程 27
3.4 微型試片腐蝕疲勞實驗 29
3.4.1 微型試片 29
3.4.2 微型疲勞試片K值估算 29
3.4.3 微型試片腐蝕疲勞實驗設備與流程 30
3.5 腐蝕試片SEM斷面觀察 31
第四章 實驗結果與討論 48
4.1 靜態腐蝕實驗結果討論 48
4.1.1 氯離子濃度影響 48
4.1.2 酸鹼度影響 49
4.1.3 溫度影響 49
4.1.4 時間影響 49
4.1.5 靜態腐蝕實驗結論 50
4.1.6 靜態腐蝕拉伸試片破斷處表面觀察 50
4.2 應力腐蝕實驗結果討論 51
4.2.1 應力腐蝕拉伸結果討論 51
4.2.2 應力腐蝕拉伸試片破斷處表面觀察 52
4.3 CT試片腐蝕疲勞實驗結果討論 52
4.3.1 CT試片腐蝕疲勞氯離子濃度對裂縫生長速率影響 53
4.3.2 CT試片腐蝕疲勞酸鹼度對裂縫生長速率影響 53
4.4 微型試片腐蝕疲勞實驗結果討論 54
4.4.1 微型試片腐蝕疲勞氯離子濃度對裂縫生長速率影響 55
4.4.2 微型試片腐蝕疲勞酸鹼度對裂縫生長速率影響 55
4.5 腐蝕試片SEM斷面觀察結果 56
4.6 CT試片與微型試片腐蝕疲勞實驗結果比較 57
第五章 結論 91
參考文獻 94
附錄A 靜態腐蝕各參數試片實驗結果 98
附錄B 靜態腐蝕各參數實驗數據表格 118



[1] 行政院飛航安全委員會航空器飛航事故事實資料報告,“XX航空公司CI7552班機 737-800機型 國籍標誌及登記號碼 B-16805 落地後檢查發現機腹 77公分裂紋事故”, ASC-AFR-08-07-001, 2007,
http://www.asc.gov.tw/downfile/CI7552FactualReport.pdf
[2] 柯賢文, “腐蝕及其防制”, 全華科技出版社, 台北, 1995, pp. 127–135.
[3] 左景伊, “應力腐蝕破裂”, 西安交通大學出版社, 陝西西安, pp. 1–9, 1985.
[4] Z. Szklarska-Smialowska, “Pitting Corrosion of Aluminum,” Corrosion Science 41, pp. 1743–1767, 1999.
[5] D.W. Hoeppner, “Fatigue Mechanisms,” American Society for Testing and Materials (ASTM), Vol. 675, Philadelphia, PA, p. 841, 1979.
[6] S.I. Rokhlin, J.Y. Kim, H. Nagy, B. Zoofan, “Effect of Pitting Corrosion on Fatigue
Crack Initiation and Fatigue Life,” Engineering Fracture Mechanics Vol. 2,
pp. 425–444, 1999.
[7] S. Ishihara, S. Saka, Z.Y. Nan, T. Goshima, S. Sunada, “Prediction of Corrosion
Fatigue Lives of Aluminum Alloy on The Basis of Corrosion Pit Growth Law,”
Fatigue and Fracture of Engineering Material and Structures Vol. 29, pp. 472–480, 2006.
[8] 范萬昌, “不同環境下之Custom 450 不銹鋼腐蝕疲勞性質研究,” 國立中央大學機械工程研究所碩士論文, 2000.
[9] T.D. Burleigh, “The Postulated Mechanisms for Stress Corrosion Cracking of Aluminum Alloys,” Corrosion Science, pp. 89–98, 1991.
[10] N.J.H. Holroyd, “EICM Proceedings,” pp. 311–345, 1990.
[11] H. Vogt, M.O. Speidel, “Stress Corrosion Cracking of Two Aluminum Alloys” Corrosion Science Vol. 40, pp. 251–270 , 1998.
[12] F. P. Ford and M. Silverman, “Mechanistic Aspects of Environment-Controlled Crack Propagation in Steel/Aqueous Environment System,” Report No.HTGE-451-8-12, General Electric Company, Schenectady, New York, 1979.
[13] K. N. Krishnan, “Mechanism of Corrosion Fatigue in Super Duplex Stainless Steel in 3.5 Percent NaCl Solusion,” International Journal of Fracture, Vol. 88, pp. 205–213, 1997.
[14] W. Schuoetz, “A history of fatigue,” Engineering Fracture Mechanics Vol. 54, No. 2, pp. 263–300, 1996.
[15] K. J. Miller and R. Akid, “The Application of Microstructural Fracture Mechanics to Various Metal Surface States,” Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 452, pp. 1411–1432, 1996.
[16] R. Akid and G. Murtaza, “Environment Assisted Short Crack Growth Behaviour of
a High Strength Steel,” ESIS 13, Mechanical Engineering Publications, London,
pp. 193–207, 1992.
[17] P. C. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Laws,” Journal of Basic Engineering, Vol. 85, pp. 528–534, 1960.
[18] 蔡賜慶, “疲勞裂縫填充修補之評估模式探討,” 碩士論文, 台灣大學機械工程研究所, 2000.
[19] 林賢易, “微型疲勞試驗機,” 碩士論文, 台灣大學機械工程研究所, 2006.
[20] W. Elber, “Fatigue Crack Closure Under Cyclic Tension,” Engineering Fracture
Mechanics, Vol.2, pp.37–45, 1970.
[21] W. Elber, “The Significance of Fatigue Crack Growth,” ASTM STP486, American Society for Testing and Material, Philadelphia, pp.230–241, 1971.
[22] S. Suresh and R. O. Ritchie, “Propagation of Short Crack,” International Metals
Reviews, Vol. 29, pp. 445–476, 1984.
[23] Y. G. Chun, S. I. Pyun, and S. M. Lee, “The Influence of Loading Frequency on the Fatigue Crack Propagation Behaviour of Al- Zn-Mg Alloy at Low Cyclic Stress Intensity Level in 3.5 wt% NaCl Solution,” Journal of Materials Science Letters, Vol. 10, pp. 1439–1442, 1991.
[24] D. L. Davidson, “Fatigue Crack Tip Displacement Observations,” Journal of Material Science, Vol. 14, No. 1, pp.231–233, 1979.
[25] G. Nicoletto, “Plastic Zone About Fatigue Cracks in Metals,” International Journal of Fatigue, No. 2, pp.107–115, 1989.
[26] H. Sehitoglu, “Crack Opening and Closure in Fatigue, ” Engineering Fracture Mechanics, ” Vol. 21, No. 2, pp.329–339, 1985.
[27] O. Buck, C. L. Marcus, “Plasticity Effects in Crack Propagation, ” Engineering Fracture Mechanics, Vol. 5, pp.32–34, 1973.
[28] P. E. Irving, J. L. Robinson, C. J. Beevers, “Fatigue Crack Closure in Titanium and Titanium Alloy, ” International Journal of Fracture, Vol. 9, pp.105–108, 1983.
[29] W.R. Corwin and G.E. Lucas, “The Use of Small-scale Specimen for Testing Irradiated Material,” ASTM STP888, American Society for Testing and Material, Albuquerque, 1983.
[30] W.R. Corwin, F.M. Haggag, W.L. Server, Eds, “Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Plate Life Extension,” ASTM STP1204, American Society for Testing and Material, New Orleans, 1993.
[31] W.R. Corwin, S.T. Rosinski, and E.V. Walle, Eds. “Small Specimen Test Technique,” ASTM STP1229, American Society for Testing and Material, New Orleans, 1997.
[32] J.F. Kalthoff and M. Gregor, “Instrumented Impact Testing of Subsize Charpy V-notch Specimens,” Small Specimen Test Techniques, ASTM STP 1329, American Society for Testing and Material, pp.98–109, 1998.
[33] D.J. Alexander, “Fracture Toughness Measurements with Subsize Disk Compact Specimens,” Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal annealing and Plant Life Extension, ASTM STP 1204, American Society for Testing and Material, pp.130–142, 1993.
[34] T.S. Yun, J.S. Kim, S.H. Chi, and J.H. Hong, “Effect of Specimen Thickness on The Tensile Deformation Properties of SA508 C1.3 Reactor Pressure Vessel Steel,” Small Specimen Test Techniques, ASTM STP 1329, American Society for Testing and Material, pp.575–587, 1998.
[35] S. Nunomura, T. Nishijima, Y. Higo, and A. Hishinuma, “Evaluation of Tensile Properties Using a TEM Disk-size Specimen,” Applied to Nuclear Reactor Vessel Thermal annealing and Plant Life Extension, ASTM STP1204, American Society for Testing and Material, pp.256–266, 1993.
[36] F.M. Haggag, W.L. Server, G.E. Lucas, G.E. Odette, and J.W. Sheckherd, “The Use of Miniaturized Tests to Predict Flow Properties and Estimate Fracture Toughness in Deformed Steel Plates,” Journal of Testing and Evaluation, JTEVA, Vol1, No.1, pp.62–69, 1990.
[37] T. Misawa, T. Adaci, M. Saito, and Y. Hamaguchi, “Small Punch Tests for Evaluating Ductile-brittle Transition Behavior of Irradiated Ferritic Steels,” Journal of Nuclear Material, Vol.150, pp.1619–1622, 1989.
[38] G.R. Rao and B.A. Chin, “Development of a Miniature Disk Bending Fatigue Specimen,” Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal annealing and Plant Life Extension, ASTM STP 1204, American Society for Testing and Material, pp.267–274, 1993.
[39] S. Nunomura, S. Noguchi, Y. Okamura, S. Kumai, and S. Jitsukawa, “Two Micro Fatigue Test Methods for Irradiated Materials,” Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal annealing and Plant Life Extension, ASTM STP 1204, American Society for Testing and Material, pp.275–288, 1993.
[40] 林士瑋, “利用微型平板試片探討疲勞性質,” 碩士論文, 台灣大學機械工程研究所, 2008.
[41] 中國國家標準CNS 2112 G 2014─金屬材料拉伸試驗試片.
[42] “Standard Test Method for Measurement of Fatigue Crack Growth Rates,” ASTM
E647-95a, Annual Book of ASTM Standards, Vol. 3.01, American Society for
Testing and Materials, Philadelphia, USA, pp. 562–598, 1998.
[43] J.W. Dally,W.F. Riley,“Experimental Stress Analysis,” Third Edition, pp.97–100, 1999.
[44] L.P. Pook, “The Effect of Friction on Pin Jointed Single Edge Notch Fracture Toughness Test Specimens,” International Journal of Fracture Mechanics, Vol. 4, pp.295–297, 1968.
[45] Harris, “Stress Intensity Factors for Hollow Circumferentially Notched Round Bars, ” Journal of Basic Engineering, pp.49–54, 1967.
[46] S. Suresh and R. O. Ritchie, “On the Influence of Environment on the Load Ratio
Dependence of Fatigue Thresholds in Pressure Vessel Steel,” Engineering Fracture Mechanics, Vol. 18, pp. 785–800, 1983.
[47] K. Komai and K. Minoshima, “Dynamic and Cyclic Stress Corrosion Cracking
Resistance of Metals,” Edited by K. Iida and A. J. McEvily, Elsevier Applied
Science, New York, pp. 373–389, 1986.
[48] C. T. Fujii and J. A. Smith, “Environmental Influences on the Aqueous Fatigue
Crack Growth Rates of HY-130 Steel,” ASTM STP 801, Edited by T. W. Crooker
and B. N. Leis, American Society for Testing and Materials, Philadelphia, pp. 390–402, 1983.
[49] 徐森煌, “304不鏽鋼疲勞裂縫之減速現象,” 碩士論文, 台灣大學機械工程研究所, 1991.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔