(3.237.178.91) 您好!臺灣時間:2021/03/07 14:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭祐甫
研究生(外文):Yu-Fu Kuo
論文名稱:中央空調系統運轉耗能模擬與控制策略最佳化之研究
論文名稱(外文):Simulation of Energy Consumption and Optimization of Control Strategy of the Central Air-Conditioning System
指導教授:陳希立陳希立引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:163
中文關鍵詞:粒子群最佳化中央空調系統冷卻水塔濕盤管
外文關鍵詞:particle swarm optimizationcentralized air-conditioning systemcooling towerwet finned-tube heat exchanger
相關次數:
  • 被引用被引用:10
  • 點閱點閱:444
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以模擬計算方式,探討中央空調系統於不同運轉策略下,對系統總耗能的影響,並提出實務運轉可應用之方法。本文先以五個通用數學問題比較四種粒子群最佳化演算法的效能,以求解穩定性為主要考量,歸納得線性遞減慣性權重法較適合本研究應用,並使用此法解決後續之空調系統最佳化運轉策略問題。接著對中央空調系統運轉策略問題進行研究,將問題分為四項子題,分別為:冰水主機群負載分配、冰水主機與冷卻水塔聯合運轉、冰水主機與空調箱聯合運轉、以及完整之中央空調系統運轉,其中驗證了空調設備的耗電計算模式,建立並驗證冷卻水塔與空調箱濕盤管的性能簡化計算模式。本文所提出之冷卻水塔與空調箱濕盤管性能簡化計算模式,經驗證均優於前人所提之計算模式,可於較大操作條件範圍求得較準確的熱傳數據。而在系統運轉策略方面,獲得冰水供水溫度最佳化調整是最有效方案的結論,在本研究案例分析中,系統全年的用電量可減少862.3 MW•hr,節能率達14.85%,二氧化碳排放量亦可降低548.4 ton。此最佳冰水溫度與系統負載率呈線性關係,如此便可依據系統運轉的負載率,即時且容易地調整冰水供水溫度。

This thesis numerically investigates the power consumption of the centralized air-conditioning system under several operation strategies and then concludes a method to implement in practice. First, this study compares the performances of four updating rules of the particle swarm optimization through applying five mathematic problems. The linear-decayed inertia weight method is favorable for this study because of the stability of solutions searching. Then, four subjects, which are chiller-loading distribution, chillers and cooling towers cooperation, chilled-water and air-handler system cooperation and integrated centralized air-conditioning system operation, are specified to investigate the control strategies. The validations of the power consumption models of the air-conditioning components are accomplished. The simplified heat transfer models of cooling towers and wet finned-tube heat exchangers are also proposed and validated. The proposed simplified models can be implemented with a wide range and the predicting results are better than present models. The proposed operation strategy is optimal chilled-water supply temperature. In one sample case, the system operated under the proposed strategy can save the energy of 862.3 MW•hr and reduce the carbon-dioxide emission of 548.4 tons. The energy-saving rate can reach 14.85% compared with the energy consumption of the traditional operation strategy. The optimal chilled-water supply temperature can be correlated as a linear function of cooling load rate. Therefore, the chilled-water supply temperature can be adjusted easily and rapidly according to the system cooling load rate.

誌謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 X
符號說明 XI
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 8
1.4 研究方法 9
第二章 粒子群最佳化演算法 13
2.1 前言 13
2.2 粒子群演算法發展歷程 14
2.3 結合懲罰函數之應用 18
2.4 粒子群最佳化演算法之選擇 21
2.4.1 演算效能測試 21
2.4.2 測試結果與討論 23
第三章 冰水主機群組運轉耗能與控制策略 28
3.1 前言 28
3.2 冰水主機耗電計算模式 29
3.3 冰水主機群組運轉策略 30
3.3.1 平均負載法 30
3.3.2 最佳化負載分配 31
3.4 案例分析 34
3.4.1 案例介紹 34
3.4.2 各運轉策略耗電分析與討論 35
第四章 冰水主機與冷卻水塔群組運轉耗能與控制策略 46
4.1 前言 46
4.2 冷卻水塔熱傳性能模擬 47
4.2.1 Merkel計算模式 47
4.2.2 ASHRAE經驗法則 49
4.2.3 冷卻水塔簡化熱傳方程式 50
4.2.4 冷卻水塔簡化熱傳方程式驗證 52
4.3 冷卻水塔風機耗電計算模式 54
4.4 冷卻水塔運轉策略 54
4.4.1 固定冷卻水塔出口水溫 54
4.4.2 固定趨近度 55
4.4.3 固定冷卻水塔風機轉速 56
4.4.4 近似最佳化運轉 56
4.4.5 風機最佳化運轉 57
4.5 案例分析 59
4.5.1 案例介紹 59
4.5.2 各運轉策略耗電分析與討論 60
第五章 冰水與空調箱系統運轉耗能與控制策略 98
5.1 前言 98
5.2 濕式鰭管熱交換器熱傳性能模擬 99
5.2.1 濕式鰭管熱交換器熱傳原理 99
5.2.2 濕式鰭管熱交換器簡化熱傳方程式 101
5.2.3 濕式鰭管熱交換器簡化熱傳方程式驗證 103
5.3 冰水泵與空調箱風機耗電計算模式 104
5.3.1 冰水泵耗電計算模式 104
5.3.2 空調箱風機耗電計算模式 106
5.4 冰水與空調箱系統運轉策略 107
5.4.1 固定冰水系統供水溫度 107
5.4.2 最佳化冰水系統供水溫度 108
5.4.3 固定空調箱系統供風溫度 109
5.4.4 最佳化空調箱系統供風溫度 110
5.5 案例分析 112
5.5.1 案例介紹 112
5.5.2 各運轉策略耗電分析與討論 114
第六章 中央空調系統運轉耗能與控制策略 135
6.1 前言 135
6.2 中央空調系統運轉策略 136
6.3 案例分析 137
6.3.1 案例介紹 137
6.3.2 各運轉策略耗電分析與討論 139
第七章 結論與建議 156
7.1 結論 156
7.2 建議 158
參考文獻 160


[1] 經濟部能源局網站,http://www.moeaboe.gov.tw/。
[2] 財團法人綠色生產力基金會,2008非製造業能源查核年報。財團法人綠色生產力基金會,2008。
[3] J.E. Braun, J.W. Mitchell, S.A. Klein and W.A. Beckman. “Models for variable speed centrifugal chillers.” ASHRAE Transactions, vol.93, part1, pp.1794-1804, 1987.
[4] 陳進龍,動態規劃法運用於儲冰式空調系統與低溫送風之最佳化設計。博士論文,國立臺灣大學機械工程學研究所,2000。
[5] ASHRAE, ASHRAE Handbook-HVAC Applications, American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc., Chapter 41, 2007.
[6] F. Merkel, Verduftungskühlung. Forschungarbeiten 275, 1925.
[7] W.F. Stoecker, “Procedures for simulating the performance of components and systems for energy calculations” Atlanta: ASHRAE, 1976.
[8] ASHRAE, ASHRAE Handbook- HVAC Systems and Equipment. American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc., Chapter 39, 2008.
[9] 張峻銓,冰水主機與冷卻水塔群組最佳化運轉策略研究。碩士論文,國立臺灣大學機械工程學研究所,2007。
[10] 吳達偉,中央空調系統節能效益驗證模式與最佳化運轉策略之研究。碩士論文,國立臺灣大學機械工程學研究所,2008。
[11] J.L. Threlkeld, Thermal Environmental Engineering. Prentice-Hall, Inc., New-York, 1970.
[12] J.E. Braun, “Applications of optimal control to chilled water systems without storage.” ASHRAE Transactions, vol.95, part 1, pp.663-675, 1989.
[13] 趙慶松,空調主機群之最佳負載分配。碩士論文,國立台北科技大學冷凍空調工程研究所,2002。
[14] 黃啟泰,懲罰函數法應用於空調系統之最佳化控制。碩士論文,國立臺灣大學機械工程學研究所,2006。
[15] Y.C. Chang, J.K. Lin and M.H. Chuang, “Optimal chiller loading by genetic algorithm for reducing energy consumption.” Energy and Buildings, vol.37, pp.147-155, 2005.
[16] Y.C. Chang, “Genetic algorithm based optimal chiller loading for energy conservation.” Applied Thermal Engineering, vol.25, pp.2800-2815, 2005.
[17] A. Jahanbani Ardakani, F. Fattahi Ardakani and S.H. Hosseinian, “A novel approach for optimal chiller loading using particle swarm optimization.” Energy and Buildings, vol.40, pp.2177-2187, 2008.
[18] Y.C. Chang, “An innovative approach for demand side management-optimal chiller loading by simulated annealing.” Energy, vol.31, pp.1883-1896, 2006.
[19] Y.C. Chang, W.H. Chen, C.Y. Lee and C.N. Huang, “Simulated annealing based optimal chiller loading for saving energy.” Energy Conversion and Management, vol.47, pp.2044-2058, 2006.
[20] W.S. Lee and L.C. Lin, “Optimal chiller loading by particle swarm algorithm for reducing energy consumption.” Applied Thermal Engineering, vol.29, pp.1730-1734, 2009.
[21] Y.C. Chang, C.Y. Lee, C.R. Chen, C.J. Chou, W.H. Chen and W.H. Chen, “Evolution strategy based optimal chiller loading for saving energy.” Energy Conversion and Management, vol.50, pp.132-139, 2009.
[22] J.E. Braun and G.T. Diderrich, “Near-optimal control of cooling towers for chilled-water systems.” ASHRAE Transactions, vol.96, part 2, pp.806-813, 1990.
[23] C. Reynolds, “Flocks, herds and schools: A distributed behavioral model.” Computer Graphics, vol.21 part4, pp.25-34, 1987.
[24] M. Dorigo, V. Maniezzo and A. Coloni, “The ant system: an autocatalytic optimizing process,” Technical Report No. 91-016 Revised, 1991.
[25] J. Kennedy and R. Eberhart, “Particle swarm optimization.” Proceedings of the IEEE International Conference on Neural Networks, vol.4, pp.1942-1948, 1995.
[26] R. Eberhart and Y. Shi, “Particle swarm optimization: developments, applications and resources.” Proceedings of the 2001 Congress on Evolutionary Computation, vol.1, pp.81-86, 2001.
[27] Y. Shi and R. Eberhart, “A modified particle swarm optimizer.” Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, pp.69-73, 1998.
[28] Y. Shi and R. Eberhart, “Empirical study of particle swarm optimization.” Proceedings of the 1999 Congress on Evolutionary Computation, vol.3, pp.1945-1950, 1999.
[29] R. Eberhart and Y. Shi, “Tracking and optimizing dynamic systems with particle swarms.” Proceedings of the 2001 Congress on Evolutionary Computation, vol.1, pp.94-100, 2001.
[30] M. Clerc, “The swarm and the queen: towards a deterministic and adaptive particle swarm optimization.” Proceedings of the IEEE International Congress on Evolutionary Computation, pp.1951-1957, 1999.
[31] R. Mendes, J. Kennedy and J. Neves, “The fully informed particle swarm: Simpler, maybe better.” IEEE Transactions on Evolutionary Computation, vol.8, no.3, pp.204-210, 2004.
[32] R. Eberhart and Y. Shi, “Comparison between genetic algorithms and particle swarm optimization.” Proceedings of the 7th International Conference on Evolutionary Programming, pp.611-616, 1998.
[33] ARI, ARI Standard 550/590-2003:Performance Rating of Water-Chilling Packages Using The Vapor Compression Cycle, Air-conditioning & Refrigeration Institute, 2003.
[34] 良機實業股份有限公司網站,http://www.liangchi.com/。
[35] A.P. Colburn, “A method of correlating forced convection heat transfer data and a comparison with fluid friction.” Transaction AICHE. vol. 19, pp.174-210, 1933; reprinted in International Journal of Heat and Mass Transfer, vol. 7, pp. 1359-1384, 1964.
[36] A. Zukauskas, “Heat Transfer from Tubes in Cross Flow.” Advances in heat transfer, vol. 8, New York, Academic Press, Inc., pp.93-160, 1972.
[37] M. Abu Madi, R.A. Johns and M.R. Heikal, “Performance characteristics correlation for round tube and plate finned heat exchangers.” International Journal of Refrigeration, vol. 21, no. 7, pp.507-517, 1998.
[38] Aerofin Corporation, http://www.aerofin.com/.
[39] Grundfos CBS, Inc., http://www.pacopumps.com/
[40] Kruger Ventilation Industries, http://www.krugerfan.com/

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔