(3.237.97.64) 您好!臺灣時間:2021/03/03 00:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃志瑋
研究生(外文):Tzy-Wei Huang
論文名稱:間隙流體含量與黏滯性對滑道顆粒流崩塌行為之影響
論文名稱(外文):Effects of liquid volume and viscosity on the dynamics of granular avalanche down inclined chute
指導教授:揚馥菱
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:109
中文關鍵詞:儲存槽顆粒崩塌行為間隙流體體積霍夫轉換粒子追蹤測速法
外文關鍵詞:reservoiravalanche of granular behaviorinterstitial liquid volumeCHTPTV
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們建構一個包含傾斜滑道與儲存槽的實驗裝置,去探討不同體積的間隙流體與傾斜角的儲存槽內顆粒崩塌行為。藉由高速攝影機搭配霍夫轉換及粒子追蹤測速法觀測相同重力位能下之固液混合體暫態行為,可以發現非沉浸、部分沉浸與完全沉浸情況下,顆粒混合體的體積分率、速度、底床滑動速度及應變率大小及分布情況有所不同。共存液體對於統御流場顆粒行為有著較大的影響,從沉浸混合體比乾混合體較適用於顆粒流的1-D Savage-Hutter model可以得知。

A laboratory-scale facility composed of an inclined flume and the reservoir is constructed to investigate the moving avalanche of granular behavior with respect to various inclinations and interstitial liquid volume. The unsteady bulk motion of the granular mixtures prepared with matched same potential energy is obtained by employing the high-speed camera with the methods of Circular Hough Transform (CHT) and particle tracking velocimetry (PTV). We find that the bulk-averaged velocity, basal slip velocity and strain-rate profiles of the mixtures are different under non-immersed, partially-immersed and fully-immersed situations. Coexisting liquid has a strong effect on unifying the bulk motion across the flow depth, which indicates that the Savage-Hutter model developed for surface granular flow may be more feasible for capturing the avalanche of immersed mixtures than dry bulk.

致謝 i
摘要 iii
Abstract v
List of Tables xi
List of Figures xiii
Notations xxi
Chapter 1 Introduction 1
Chapter 2 Experiment equipment 5
2.1 Experiment set-up 6
2.1.1 Experimental facility 6
2.1.2 Experimental materials 8
2.2 Experimental procedure 9
Chapter 3 Image analysis processing 19
3.1 Image export and preliminary manipulation 19
3.2 Circular Hough Transformation 22
3.3 Particle Tracking Velocimetry to identify the same particles 26
Chapter 4 Experimental results (I) —directly obtained from PTV and bulk averaging 29
4.1 Decreasing volume profile—Characteristic time 30
4.1.1 Characteristic time 32
4.1.2 The result discussion compared with characteristic time Tc 40
4.2 Experimental results —directly obtained from PTV and bulk averaging 47
4.2.1 Bulk volume fraction field 47
4.2.2 Velocity depth profile 57
4.2.3 Basal velocity profile 69
4.3 Conclusions and remarks 75
Chapter 5 Experimental results (II) —derived from bulk motion and property 77
5.1 Normal strain rate profile 77
5.2 Divergence ( ∇∙V ) profile 85
5.3 Shear strain rate profile 89
5.4 Explore the Savage-Hutter''s model on depth-averaged velocity profiles 94
5.5 Conclusions and discussions 104
Chapter 6 Summary and Conclusions 105
References 107


Armanini, A., Capart, H., Fraccarollo, L., and Larcher, M. “Rheologicalstratification in experimental free-surface flows of granular-liquid mixtures,” J.Fluid Mech. 532, 269-319 (2005)

Ahn H., Brennen C.E. and Sabersky R.H., “Analysis of the Fully Developed Chute Flow of Granular Materials,” Applied Mechanics. 59, 109-119 (1992)

Bagnold, R. A. “Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear,” Proc. R. Soc. Lond. A 225, 49-63 (1954)

Balmforth, N. J. and Kerswell, R. R. “Granular collapses in two dimensions,” J. Fluid Mech. 38, 399-428 (2005)

Bocquet L., Charlaix, É., and Restagno, F. “Physics of humid granular media,” C.R. Physique. 3 207–215 (2002)

Bonamy, D., Daviaud, F., and Laurent, L. “Experimental study of granular surface flows via a fast camera: a continuous description,” Phys. Fluids. 14, 1666 (2002)

Campbell, C. S. “Granular material flows-An overview,” Powder Technology. 162, 208-229 (2006)

Capart, H., Young, D. L., and Zech, Y. “Voronoï imaging methods for the measurement of granular flows,” Experiments in Fluids. 32(121), 121-135 (2002)

Cawthorn, C. J.: “A constitutive law for granular flows: Predicting the appearance of static zones,” Smith-Knight/Rayleigh-Knight Essay. (2008)

Chou, H. T. and Lee, C. F. “Collapsing process of uniform granular slopes,”Powders and Grains 2009, Proceedings of the 6th International Conference on Micromechanics of Granular Media. 601-604 (2009)

Debayle, J., Raihane, A., Belhaoua, A., Bonnefoy, O., Thomas, G., Chaix, J.M., and Pinoli, J.C. “Velocity field computation in vibrated granular media using an optical flow based multiscale image analysis method,” Image Analysis and Stereology. 28, 35-43 (2009)

Duda, R O and Hart, P E “Use of the Hough transformation to detect lines and curves in pictures,” Commun. ACM. 15,1 (1972)

Du Pont, S. C., Fischer, R., Gondret, P., Perrin, B., and Rabaud, M. “Instantaneous Velocity Profiles during Granular Avalanches,” Phys. Rev. Lett. 94, 048003 (2005)

Forterre, Y. and Pouliquen, O. “Flows of dense granular media. Annual Review of Fluid Mechanics,” 40, 1-24 (2008)

Fraccarollo, L., Larcher, M., and Armanini, A. “Depth-averages relations for granular-Liquid uniform flows over mobile bed in a wide range of slope values,” Granular Matter, 9, 145-157 (2007)

GDR MiDi. “On dense granular flow,” Eur. Phys. J. E. 14(14), 341-365 (2004)

Iverson, R. M. “The physics of debris flows,” Reviews of Geophysics. 35, 245-296 (1997)

Jop, P., Forterre, Y., and Pouliquen, O. “A constitutive law for dense granular flows,” Nature. 441:727 30 (2006)

Orpe, A. V. and Khakhar, D. V. “Rheology of surface granular flows,” J. Fluid Mech. 571, 1-32, (2007)

Pouliquen O., “On the shape of granular fronts down rough inclined planes,” Phys. Fluids. 542, 11 (1999)

Pudasaini, S. P. and Hutter, K. “Avalanche dynamics,” Springer, Germany. (2007)

P. V. C. Hough, “Methods and Means for Recognizing Complex Patterns,” U.S. Patent. 069654 (1962)

Rafael C. Gonzalez and Richard E. Woods, “Digital Image Processing,” Prentice Hall. (2007)

Savage, S. B., and K. Hutter, “The motion of a finite mass of granular material down a rough incline,” J. Fluid Mech. 199, 177– 215 (1989)

Tegzes, P., Vicsek, T., and Schiffer, P. “Avalanche dynamics in wet granular materials,” Phys. Rev. Lett. 89, 094301-4 (2002)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 18.侯錦雄、姚靜婉 (1997) 。 市民休閒生活態度與公園使用滿意度之相關研究。 戶外遊憩研究,10(3),1-17.
2. 19.侯錦雄、郭彰仁 (2003) 。 關渡、高美、七股濕地生態遊憩動機與旅遊特性之比較。 觀光研究學報,9(1), 1-18。
3. 12.林宗賢、王維靖 (2008) 。 遊客對文化襲產旅遊區的動機與知覺之研究—以億載金城為例 。旅遊管理研究,第8卷第一期。
4. 6. 李宗鴻 (2007) 。 野溪溫泉遊憩行為之研究-以多納野溪溫泉區為例。 旅遊管理研究,7 (1) ,99-116。
5. 29.畢璐鑾、陳仲杰 (2006)。 從事休閒動機之動機因素。大專體育,83, 140-147.
6. 32.郭國軒、柳立偉 (2007)。 影響旅遊動機之因素探討--以水庫風景區遊客為例。 真理觀光學報, 23-36。
7. 33.陳水源 (1988)。 遊客遊憩需求與遊憩體驗之探討。 戶外遊憩研究,1(3), 38-49。
8. 34.陳勁甫、陳威亞 (2005)。 大學生遊學產品意象、知覺價值、滿意度及購後行為意圖關係之研究。 戶外遊憩研究,第18卷第1期, 23-46。
9. 35.陳勁甫、曾文祥、郭文凱 (2008)。 服務品質、知覺價質、滿意度與顧客忠誠度之研究—以高雄真愛碼頭觀光船為例。 旅遊管理研究,第8卷第一期, 59-76。
10. 43.黃宗成、吳忠宏、高崇倫 (2000)。 休閒農場遊客遊憩體驗之研究。 戶外遊憩研究,13(4), 1-25。
11. 45.黃宗成、黃躍雯、余幸娟 (2000)。 宗教觀光客旅遊動機、期望、滿意度關係之研究。 戶外遊憩研究,13(3), 23-48。
12. 58.蕭芸殷、歐聖榮 (1998)。 生態旅遊遊客特質之研究。 戶外遊憩研究,11,3。
13. 60.賴其勛、邴傑民、李雅雯 (2001)。 服務品質與購後行為意圖關係之研究--以台中百貨業為例。 企業管理學報,第四十九期,135-158。
14. 61.賴美蓉、王偉哲 (1999)。 遊客對休閒農業之認知與體驗之研究-以苗栗飛牛牧場為。 戶外遊憩研究,12(1),19-40。
 
系統版面圖檔 系統版面圖檔