(54.236.58.220) 您好!臺灣時間:2021/02/28 08:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林義暐
研究生(外文):Yi-Wei Lin
論文名稱:微二相流產生器之研究
論文名稱(外文):A Study of Micro-Two Phase Flow Generator
指導教授:王安邦王安邦引用關係
指導教授(外文):Wang, An-Bang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:135
中文關鍵詞:微二相流產生液滴分離濃度梯度產生器
外文關鍵詞:micro two phase flow generationdroplet separationconcentration gradient gererator
相關次數:
  • 被引用被引用:2
  • 點閱點閱:230
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究已初步的發展出一新型的微二相流濃度梯度產生器;此濃度梯度產生器藉由微二相流的產生、分離與結合,成功的產生出具有濃度差異的微液滴。
  壓克力微加工為本實驗用於晶片製作的製程方法,有別於微機電製程,其好處為降低製作成本,且大大的縮短利用微機電製程所花費的時間;因近年來實驗室晶片(lab on a chip)的蓬勃發展,與晶片需具備有高的整合性,故本研究考慮到微二相流產生晶片其下游若需與其他晶片整合時,其因另一晶片所造成的阻抗改變是否會影響到微二相流產生的尺寸?然而在針對微二相流產生的文獻中,並無這方面的相關研究,故本研究在微二相流產生部份針對流道出口背壓變化的影響進行討論;且針對不同的流道比例α(定義為:連續相流道寬度/不連續相流道寬度比),亦進行探討,發現在本實驗所給予最大背壓6.8kpa條件下,無論α為何,都不影響微二相流的產生尺寸;另外也發現,出口背壓的控制,可使微二相流的產生有很好的重複性,吾人亦與文獻比對,本文數據明顯優於文獻上所得的結果。而關於α參數的影響:α越大,液滴的尺寸會越小。而無論在任何α條件下,液滴的尺寸會隨著連續相黏度的增加而變小。另外文獻上一個無實驗驗證的假設:不連續相的黏度並不影響液滴的產生,本文的實驗結果顯示:不連續相的黏度的增加在不同的α條件下,對於微二相流的尺寸確無明顯的變化,但會影響微二相流產生的型態圖(flow map),意即隨著不連續相的黏度增加,其產生段塞流(slug flow)的區域會隨之變小,故並不盡如文獻上的假設可將不連續相黏度的影響忽略。
  另外對於液滴二次分離部份,吾人考慮到晶片使用的簡單性,選擇被動式的液滴二次分離進行研究;並以調控其下游的流阻,以簡易的控制二出口背壓調控液滴二次分離的比例,液滴的最大分離比例可優於文獻上的值達到10.8倍。


In this study, a new type- Micro-two phase flow concentration gradient generator has been demonstrated. This generator generated droplets with different concentration by Micro-two phase flow generation, separation and combination.
Plastic micro-machining is the method to fabricate the chip in this study. The advantages of this method are reducing fabrication cost and saving time. Due to high integration of chip, it is considered that the Micro-two phase flow chip needs to integrate with the other chips. And the resistance from the other chips wether influences the size of droplet generation must be considered. Since, there are no related researches in literatures. This study discusses the effect of integration resistance by changing the back pressure. To different α(Definition is: Continuous phase channel width/dispersed phase channel) were also discussed. The result showed that the outle pressure did not affect the size of droplet different choice of α. Compare to lteratures, it was found that the outlet pressure control would effective improve the uniformity of droplet size in my own research. For effect of α, the droplet size will decrease as increasing of α. In the continuous phase, for different choice of α, the smaller the droplet size is, the lager the viscosity is. Most of them assumed that the viscosity of dispersed phase flow does not affect the size of droplet in the literatures. However, the result in my own research showed that the viscosity of dispersed phase does not affect the size of droplet. But, the droplet generation type (flow map) has obvious influence. With increasing viscosity of dispersed phase flow, the area of slug flow will decrease. So, the viscosity of dispersed phase flow can not be neglected in the research of droplet formation.
In addition to separation of droplet, there were many methods of droplet separation including active and passive noes. Considering the simplification of chip, the passive method was chosen in this study. The downstream resistance in passive separation method has an extreme influence on separation ratio. Since the control of downstream rsistance from the past literatures can not satisfy the condition in my study, the simple method which is using back pressure controller to adjust the ratio of droplet separation. And, comparing to the maximum ratio of droplet separation 7.5, my study has already successfully made ratio achive 10.8.


致謝 I
中文摘要 III
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XV
符號說明 XVI
第一章 緒論 1
1.1. 前言 1
1.2. 文獻回顧 2
1.2.1. 由擴散機制的角度看微混合器 2
1.2.2. 從幾何外型看微混合器 3
1.2.2.1. 平行疊合微混合器(Parallel lamination micromixer) 3
1.2.2.2. 串聯疊合微混合器(Serial lamination micromixer) 4
1.2.2.3. 注入式微混合器(Injection micromixer) 4
1.2.2.4. 混亂式微混合器(Chaotic miromixer) 4
1.2.2.5. 液滴式微混合器(Droplet micromixer) 5
1.2.3. 濃度梯度產生器之文獻回顧 5
1.2.4. 微二相流產生器之文獻回顧 7
1.2.4.1. 微二相流之特徵型態介紹與其應用 7
1.2.4.2. 微二相流產生及其尺寸控制 9
被動式 9
主動式 13
1.3. 液滴二次分離 16
1.4. 研究動機 18
第二章 實驗儀器與方法 19
2.1. 雷射雕刻機 19
2.2. 微量天平 19
2.3. 真空裝置 19
2.4. 加熱裝置 19
2.5. 注射幫浦裝置 19
2.6. 影像擷取裝置 20
2.7. 影像分析軟體 20
2.8. 低解析度核磁共振儀 20
2.9. 晶片製作 22
第三章 理論分析 24
3.1. 混合機制 24
3.1.1. 擴散作用原理與理論公式 24
3.2. 微二相流產生機制分析 26
3.3. 液滴在微流道裡的混合理論 27
3.3.1. 擴散主導(diffusion-dominated) 27
3.3.2. 不連續相主導(dispersion-dominated) 28
3.3.3. 對流主導(convection-dominated) 29
第四章 實驗結果與討論 31
4.1. 注射幫浦流量校正 31
4.2. 染劑濃度對於擴散係數與混合結果的影響 32
4.2.1. 染劑的重量濃度與擴散係數的關係 32
4.2.2. 染劑的重量濃度與混合結果的關係 33
4.3. PDMS表面特性量測 34
4.3.1. PDMS表面接觸角量測 34
4.3.2. 在親水與疏水性T型流道之二相流產生 35
4.4. T型流道微二相流產生 36
4.5. 出口壓力的控制對上游液滴產生的影響 36
4.5.1. α=1:1、2:1、3:1於不同背壓 37
4.5.2. 出口背壓的控制對於液滴產生均勻性的影響 38
4.5.3. 不同α對於微二相流產生的影響 39
4.5.4. 不同連續相黏度(μc)對於不同α於液滴產生的影響 39
4.5.5. 不同不連續相黏度(μd)對於不同α於液滴產生的影響 41
4.6. 液滴二次分離 44
4.6.1. 無背壓控制之液滴二次分離-分離角度135° 44
4.6.2. 具背壓控制之液滴二次分離-分離角度135° 45
4.7. 微二相流濃度梯度產生 48
第五章 結論與未來展望 50
5.1. 微二相流產生之尺寸控制 50
5.2. 液滴二次分離 51
5.3. 微二相流濃度梯度產生 52
5.4. 未來展望 52
參考文獻 131



1.Nam-Trung Nguyen and Zhigang Wu, "Micromixers—a review", J. Micromech. Microeng. 15 (2005) R1–R16
2.Ali Asgar S Bhagat, Erik T K Peterson and Ian Papautsky, "A passive planar micromixer with obstructions for mixing at low Reynolds numbers", J. Micromech. Microeng. 17 (2007) 1017–1024
3.Andrew G. Hadd, Daniel E. Raymond, John W. Halliwell, Stephen C. Jacobson, and J. Michael Ramsey, "Microchip Device for Performing Enzyme Assays", Anal. Chem. 1997, 69, 3407-3412
4.Abraham D. Stroock, Stephan K. W. Dertinger, Armand Ajdari, Igor Mezic, Howard A. Stone, George M. Whitesides, "Chaotic Mixer for Microchannels", Science 295, 647 (2002)
5.Norbert Schwesinger, Thomas Frank and Helmut Wurmus, "A modular microfluid system with an integrated micromixer", J. Micromech. Microeng. 6 (1996) 99–102.
6.Ryo Miyake, The0 S. J. Lammerink, Miko Elwenspoek, Jan H. J. Fluitman, "Micro Mixer with Fast Diffusion", Proc. MEMS’93, 6th IEEE Int. Workshop Micro Electromechanical System (San Diego, CA) pp 248–53, 1993
7.Hengzi Wang, Pio Iovenitti, Erol Harvey and Syed Masood, "Numerical investigation of mixing in microchannels with patterned grooves", J. Micromech. Microeng. 13 (2003) 801–808
8.Virginie Mengeaud, Jacques Josserand, and Hubert H. Girault, "Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study", Anal. Chem. 2002, 74, 4279-4286
9.Johnson T J, Ross D and Locascio L E, "Rapid microfluidic mixing", Anal. Chem. 74 45–51, 2002
10. Abraham D. Stroock, Stephan K. W. Dertinger, Armand Ajdari, Igor Mezi , Howard A. Stone, George M. Whitesides, "Chaotic mixer for microchannels", Science 295 647–51, 2002
11.Kazuo Hosokawa, Teruo Fujii, and Isao Endo, "droplet-based nano/picoliter mixer using hydrophobic microcapillary vent", Proc the IEEE International Workshop Micro Electromechanical System (Piscataway, NJ, USA) pp 388–93, 1999
12.Phil Paik,* Vamsee K. Pamula* and Richard B. Fair, "Rapid droplet mixers for digital microfluidic systems", Lab Chip, 2003, 3, 253–259
13.Helen Song, Michelle R. Bringer, Joshua D. Tice, Cory J. Gerdts, Rustem F. Ismagilov, "Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels", Appl. Phys. Lett. 83 4664–6, 2003
14.Stephan K. W. Dertinger, Daniel T. Chiu, Noo Li Jeon, and George M. Whitesides, "Generation of Gradients Having Complex Shapes Using Microfluidic Networks", Anal. Chem. 2001, 73, 1240-1246
15."method and apparatus for gradient generation", united states patent, patent no.:6,705,357 B2, Mar.16, 2004
16.Bryan R. Gorman Æ John P. Wikswo, "Characterization of transport in microfluidic gradient generators", Microfluid Nanofluid (2008) 4:273–285
17.Kohei Motoo & Naoya Toda & Fumihito Arai &Toshio Fukuda & Kosuke Sekiyama &Masahiro Nakajima, "Generation of concentration gradient from a wave-like pattern by high frequency vibration of liquid–liquid interface", Biomed Microdevices (2008) 10:329–335
18.Daniel Irimia, Dan A Geba, and Mehmet Toner, "Universal Microfluidic Gradient Generator", Anal. Chem. 2006, 78, 3472-3477
19.Hongkai Wu, Bo Huang, Richard N. Zare, "Generation of Complex, Static Solution Gradients in Microfluidic Channels", J. AM. CHEM. SOC. 2006, 128, 4194-4195
20.Nicolae Damean, Luis F. Olguin, Florian Hollfelder, Chris Abell and Wilhelm T. S. Huck, "Simultaneous measurement of reactions in microdroplets filled by concentration gradients", Lab Chip, 2009, 9, 1707–1713
21.Robert M. Lorenz, Gina S. Fiorini, Gavin D.M. Jeffries, David S.W. Lim, Mingyan He, Daniel T. Chiu, "Simultaneous generation of multiple aqueous droplets in a microfluidic device", analytica chimica acta 630 (2008) 124–130
22.Takasi Nisisako, Toru Torii and Toshiro Higuchi, "Droplet formation in a microchannel network", Lab Chip, 2002, 2, 24–26
23.Pierre Guillot and Annie Colin, "Stability of parallel flows in a microchannel after a T junction", PHYSICAL REVIEW E 72, 066301 2005
24.Piotr Garstecki, Michael J. Fuerstman, Howard A. Stone and George M. Whitesides, "Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up", Lab Chip, 2006, 6, 437–446
25.Amit Gupta, S. M. Sohel Murshed, and Ranganathan Kumar, "Droplet formation and stability of flows in a microfluidic T-junction", APPLIED PHYSICS LETTERS 94, 164107 2009
26.Yen-Heng Lin, Chun-Hong Lee, and Gwo-Bin Lee, "Droplet Formation Utilizing Controllable Moving-Wall Structures for Double-Emulsion Applications", JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 17, NO. 3, JUNE 2008
27.Alvin U. Chen, Patrick K. Notz, and Osman A. Basaran, "Computational and Experimental Analysis of Pinch-Off and Scaling", PHYSICAL REVIEW LETTERS, 0031-9007/02/88(17)/174501(4), 29APRIL 2002
28.Sung Kwon Cho, Hyejin Moon, and Chang-Jin Kim, "Creating, Transporting, Cutting, and Merging Liquid Droplets by Electrowetting-Based Actuation for Digital Microfluidic Circuits", JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 12, NO. 1, FEBRUARY 2003
29."Geometrically Mediated Breakup of Drops in Microfluidic Devices", PHYSICAL REVIEW LETTERS, 0031-9007/04/92(5)/054503(4), 6 FEBRUARY 2004
30.Laure Ménétrier-Deremble and Patrick Tabeling, "Droplet breakup in microfluidic junctions of arbitrary angles", PHYSICAL REVIEW E 74, 035303R2006
31.M.-C. Jullien, M.-J. Tsang Mui Ching, C. Cohen, L. Menetrier, and P. Tabeling, "Droplet breakup in microfluidic T-junctions at small capillary numbers", PHYSICS OF FLUIDS 21, 072001 2009
32.Masumi Yamada, Saki Doi, Hirosuke Maenaka, Masahiro Yasuda, Minoru Seki, "Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis", Journal of Colloid and Interface Science 321 (2008) 401–407
33.龐寧寧, "漫談布朗運動",物理雙月刊(28卷一期),2006年2月
34.Minsoung Rhee and Mark A. Burns, "Drop Mixing in a Microchannel for Lab-on-a-Chip Platforms", Langmuir 2008, 24, 590-601
35.李蕢至,"氣動式矽膠薄膜微閥門之研製",國立台灣大學應用力學研究所,2005年7月
36.Piotr Garstecki, Michael J. Fuerstman, Howard A. Stone and George M. Whitesides, "Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up", Lab Chip, 2006, 6, 437–446
37.M. DE MENECH, P. GARSTECKI, F. JOUSSE AND H. A. STONE, "Transition from squeezing to dripping in a microfluidic T-shaped junction", J. Fluid Mech. (2008), vol. 595, pp. 141–161.
38.Fang Guo • Bin Chen, "Numerical Study on Taylor Bubble Formation in a Micro-channel T-Junction Using VOF Method", Microgravity Sci. Technol (2009) 21 (Suppl 1):S51–S58
39.Carsten Cramer, Peter Fischer, Erich J.Windhab, "Dropformation in a co-flowing ambient fluid", Chemical Engineering Science 59 (2004) 3045 – 3058
40.Thomas Ward, Magalie Faivre, Manouk Abkarian, Howard A. Stone, "Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate-driven pumping", Electrophoresis 2005, 26, 3716–3724
41.J.-P. Ravena, P. Marmottant, and F. Graner, "Dry microfoams: formation and flow in a confined channel", Eur. Phys. J. B 51, 137–143 (2006)
42.I-Chun Lin, Yi-Hua Wang, Ming-Che Hsieh, and An-Bang Wang, "Generation of micro-two-phase-flow for “Air-Bubble Coating", ICMF 2007, Leipzig, Germany, July 9 – 13, 2007
43.R Ahmed and T B Jones, "Optimized liquid DEP droplet dispensing", J. Micromech. Microeng. 17 (2007) 1052–1058
44.Darren R. Link, Erwan Grasland-Mongrain, Agnes Duri, Flavie Sarrazin, Zhengdong Cheng, Galder Cristobal,ManuelMarquez, and David A.Weitz, "Electric Control of Droplets in Microfluidic Devices", Angew. Chem. Int. Ed. 2006, 45, 2556 –2560
45.Avishay Bransky, Natanel Korin, Maria Khoury and Shulamit Levenberg, "A microfluidic droplet generator based on a piezoelectric actuator", Lab Chip, 2009, 9, 516–520
46.S. M. Sohel Murshed, Say Hwa Tan, Nam Trung Nguyen, Teck Neng Wong, Levent Yobas, "Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction", Microfluid Nanofluid (2009) 6:253–259
47.Adam R. Abate, Mark B. Romanowsky, Jeremy J. Agresti, and David A. Weitz, "Valve-based flow focusing for drop formation", APPLIED PHYSICS LETTERS 94, 023503 2009
48.Jean-Christophe Galas, Denis Bartolo, Vincent Studer, "Active connectors for microfluidic drops on demand", New Journal of Physics 11 (2009) 075027
49.H. Song, J. D. Tice and R. F. Ismagilov, Angew. Chem.-Int. Edit., 2003, 42, 768-772.
50.A. Gunther, S. A. Khan, M. Thalmann, F. Trachsel and K. F. Jensen, Lab Chip, 2004, 4, 278-286.
51.B. Zheng, J. D. Tice, L. S. Roach and R. F. Ismagilov, Angew. Chem.-Int. Edit., 2004, 43, 2508-2511.
52.M. Curcio and J. Roeraade, Anal. Chem., 2003, 75, 1-7.
53.G. Dummann, U. Quittmann, L. Groschel, D. W. Agar, O. Worz and K. Morgenschweis, Catal. Today, 2003, 79, 433-439.
54.J. R. Burns and C. Ramshaw, Lab Chip, 2001, 1, 10-15.
55.H. Song, D. L. Chen and R. F. Ismagilov, Angew. Chem.-Int. Edit., 2006, 45, 7336-7356.
56.A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone and D. A. Weitz, Science, 2005, 308, 537-541.
57.M. Prakash and N. Gershenfeld, Science, 2007, 315, 832-835.
58.M. J. Fuerstman, P. Garstecki and G. M. Whitesides, Science, 2007, 315, 828-832.
59."Self-diffusion in normal and heavy water in the range 1-45°"R. Mills, The Journal of Physical Chemistry, Vol. 77, No. 5, 1973
60.Nuclear Magnetic Resonance Laboratory, Department of Chemistry, National Taiwan University and Institutde of Atomic and Molecular Science, Academia Sinica


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔