(3.220.231.235) 您好!臺灣時間:2021/03/07 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊偉業
研究生(外文):Wei-Yeh Yang
論文名稱:以超音波Nakagami影像與組織基頻諧波能量比定量生物組織散射子與介質特性
論文名稱(外文):Combination of Ultrasonic Nakagami Image and Fundamental-to-Harmonic Energy for Characterizing Scatterers and Media in a Biological Tissue
指導教授:張建成張建成引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:106
中文關鍵詞:超音波肝纖維化脂肪肝Nakagami參數基頻諧波能量比
外文關鍵詞:ultrasoundliver fibrosisfatty liverNakagami parameterfundamental to harmonic energy ratio
相關次數:
  • 被引用被引用:3
  • 點閱點閱:401
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因為具有即時性、非侵入性與較低的成本這些特性,使得不論在醫學上或研究用途上超音波影像被廣泛應用。可是單靠傳統B-mode影像不足以完整描述組織內部的情況,所以必須藉由一些參數來定量當組織內部發生的變化,本論文將針對組織內散射子與介質改變下,Nakagami參數與基頻諧波能量比兩種參數來定量分析。
藉由大白鼠肝臟纖維化實驗,發現在肝臟纖維化初期,病理切片分數同為0分時,Nakagami參數與用藥量的多寡呈現正相關;在大白鼠脂肪肝實驗的部分,也發現脂肪肝不僅組織的非線性程度發生變化,Nakagami參數隨著用藥量的增加也有上升的趨勢,並且把這些結果拿來與切片染色影像做比較。
根據過去的研究己知肝纖維化是組織內部散射子的增加,使用Nakagami參數的確可以判別纖維化的程度,而脂肪肝是組織內部介質的非線程度增加,使用Nakagami參數用於判別組織介質還不是那麼清楚,而動物實驗的結果也顯示了Nakagami參數不能細分組織性質。因此我們發展一套與Nakagami影像互補的方法,即基頻諧波能量比h/f,以同時區分散射子與介質特性之改變。
在仿體實驗中,分別改變散射子數目與改變脂肪含量的仿體來進行實驗,並將超音波逆散射訊號分別利用快速複立葉轉換(FFT)與經過經驗模態分解(EMD)後再做快速複立葉轉換後算出頻譜的基頻諧波能量比,發現仿體隨著散射子的增加h/f有下降的趨勢,仿體隨著脂肪含量增加h/f有上升的趨勢。而這結果正好補足了Nakagami參數的不足,未來若能在動物實驗也有正面的結果,則可望應用於臨床上。


Ultrasound image is widely used for medical and research purposes due to many properties such as a real-time capabilities, non-invasive and low cost. But conventional B-mode image is not enough to describe the environment within the tissue , it is necessary to use some parameters to characterize when the tissue changes. This paper focuses on using Nakagami parameter and fundamental to harmonic energy ration to characterize when the scatterers and media change in tissue.
In the rat liver fibrosis experimental, the results show that there is a positive correlation between Nakagami parameter and dosage in the early stage of liver fibrosis when biopsy score is 0. Additionally, as can be seen from the rat fatty liver experiment, not only does the nonlinearity degree of the fatty liver tissue change, but its Nakagami parameter also increases with increase in dosage.
According to previous studies is known that liver fibrosis is the scatterers increases in the tissue, and the degree of fibrosis can indeed be determined by using Nakagami parameter. Fatty liver is due to the fact that the degree of nonlinearity of the tissue media increases. However, using Nakagami parameter to determine this increase is not fully developed. Animals experiments also showed that the Nakagami parameter can not distinguish when scatterers and media change in tissue. Therefore, we develop a complementary method with the Nakagami image, which is fundamental to harmonic energy ratio h/f, to distinguish the difference clearer.
In the phantom experiment, we change the amount of scatterers and fat content to experiment. We use the ultrasound backscattered signals to get the spectra after using fast Fourier transform(FFT) without and with empirical mode decomposition (EMD), and calculate the fundamental to harmonic energy ratio form the spectra. We found that h/f declines with increase of scatterers in the phantom, and h/f rise with increase of fat content in the phantom. These results exactly make up the shortage of Nakagami parameter. Moreover, in the future, if the animal tests show positive results, this method is expected to be used in clinic.


誌謝 I
中文摘要 III
Abstract V
目錄 VII
圖目錄 IX
表目錄 XIII
第1章 序論 1
1.1 前言 1
1.2 研究背景 2
1.3 文獻回顧 3
1.3.1 超音波逆散射統計模型分析 3
1.3.2 組織諧波影像 6
第2章 理論 9
2.1 超音波簡介 9
2.1.1 超音波基本原理 9
2.1.2 衰減 11
2.1.3 反射、折射與散射 12
2.1.4 超音波換能器與聲場 14
2.1.5 超音波影像 16
2.2 超音波之散射分析 18
2.2.1 單一散射子分析 18
2.2.2 多散射子分析 21
2.2.3 逆散射訊號統計模型 21
2.3 諧波分析 25
2.3.1 組織諧波產生機制 28
2.3.2 聲波非線性傳遞之方程式 31
2.3.3 諧波影像之特性 35
第3章 實驗材料與方法 44
3.1 動物實驗 44
3.1.1 實驗動物 44
3.1.2 系統架構 45
3.1.3 實驗流程 50
3.2 仿體實驗 54
3.2.1 仿體製作 54
3.2.2 儀器簡介 55
3.2.3 實驗流程 57
3.2.4 希爾伯特黃轉換(Hilbert Huang Transform, HHT) 58
第4章 結果 62
4.1 動物實驗 62
4.1.1 誘發大白鼠肝纖維化實驗 62
4.1.2 誘發大白鼠脂肪肝實驗 70
4.2 仿體實驗 79
4.2.1 不含intrafat下不同散射子濃度的仿體實驗 79
4.2.1 固定散射子濃度下不同含量intrafat液的仿體 86
4.3 討論 99
第5章 結論與展望 101
5.1 結論 101
5.2 未來工作 102
參考文獻 103



[1]T. Whittingham, "Medical diagnostic applications and sources," Progress in biophysics and molecular biology, vol. 93, pp. 84-110, 2007.
[2]C. Burckhardt, "Speckle in ultrasound B-mode scans," IEEE Transactions on Sonics and Ultrasonics, vol. 25, pp. 1-6, 1978.
[3]T. Tuthill, R. Sperry, and K. Parker, "Deviations from Rayleigh statistics in ultrasonic speckle," Ultrasonic imaging, vol. 10, pp. 81-89, 1988.
[4]E. Jakeman, P. Pusey, R. Establishment, and W. Malvern, "A model for non-Rayleigh sea echo," IEEE Transactions on Antennas and Propagation, vol. 24, pp. 806-814, 1976.
[5]L. Weng, J. Reid, P. Shankar, and K. Soetanto, "Ultrasound speckle analysis based on the K distribution," The Journal of the Acoustical Society of America, vol. 89, p. 2992, 1991.
[6]P. Shankar, J. Reid, H. Ortega, C. Piccoli, and B. Goldberg, "Use of non-Rayleigh statistics for the identification of tumors inultrasonic B-scans of the breast," IEEE transactions on medical imaging, vol. 12, pp. 687-692, 1993.
[7]V. Narayanan, P. Shankar, and J. Reid, "Non-Rayleigh statistics of ultrasonic backscattered signals," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 41, pp. 845-852, 1994.
[8]P. Shankar, R. Molthen, V. Narayanan, J. Reid, V. Genis, F. Forsberg, C. Piccoli, A. Lindenmayer, and B. Goldberg, "Studies on the use of non-Rayleigh statistics for ultrasonic tissue characterization," Ultrasound in Medicine & Biology, vol. 22, pp. 873-882, 1996.
[9]R. Molthen, P. Shankar, J. Reid, F. Forsberg, E. Halpern, C. Piccoli, and B. Goldberg, "Comparisons of the Rayleigh and K-distribution models using in vivo breast and liver tissue," Ultrasound in Medicine & Biology, vol. 24, pp. 93-100, 1998.
[10]P. Shankar, "A general statistical model for ultrasonic backscattering from tissues," ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 47, pp. 727-736, 2000.
[11]V. Dutt and J. Greenleaf, "Ultrasound echo envelope analysis using a homodyned K distribution signal model," Ultrasonic imaging, vol. 16, pp. 265-287, 1994.
[12]P. Shankar, "A model for ultrasonic scattering from tissues based on the K distribution," Physics in Medicine and Biology, vol. 40, pp. 1633-1649, 1995.
[13]P. Shankar, V. Dumane, J. Reid, V. Genis, F. Forsberg, C. Piccoli, and B. Goldberg, "Classification of ultrasonic B-mode images of breast masses usingNakagami distribution," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 48, pp. 569-580, 2001.
[14]V. Dumane and P. Shankar, "Use of frequency diversity and Nakagami statistics in ultrasonic tissue characterization," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 48, pp. 1139-1146, 2001.
[15]P. Shankar, "Estimation of the Nakagami parameter from log-compressed ultrasonic backscattered envelopes (L)," The Journal of the Acoustical Society of America, vol. 114, p. 70, 2003.
[16]P. Tsui and S. Wang, "The effect of transducer characteristics on the estimation of Nakagami paramater as a function of scatterer concentration," Ultrasound in Medicine & Biology, vol. 30, pp. 1345-1353, 2004.
[17]C. Huang, P. Tsui, and S. Wang, "Detection of coagulating blood under steady flow by statistical analysis of backscattered signals," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 54, pp. 435-442, 2007.
[18]P. Tsui and C. Chang, "Imaging local scatterer concentrations by the Nakagami statistical model," Ultrasound in Medicine & Biology, vol. 33, pp. 608-619, 2007.
[19]P. Tsui, C. Huang, C. Chang, S. Wang, and K. Shung, "High-frequency ultrasonic Nakagami imaging for characterizing the cataract lens in vitro," Physics in Medicine and Biology, vol. 52, pp. 6413-6425, 2007.
[20]M. Averkiou, D. Roundhill, J. Powers, A. Ultrasound, and W. Bothell, "A new imaging technique based on the nonlinear properties oftissues," 1997.
[21]L. Hann, A. Bach, L. Cramer, D. Siegel, H. Yoo, and R. Garcia, "Hepatic sonography: comparison of tissue harmonic and standard sonography techniques," Am. J. Roentgenol., vol. 173, pp. 201-206, July 1, 1999 1999.
[22]S. Choudhry, B. Gorman, J. W. Charboneau, D. J. Tradup, R. J. Beck, J. M. Kofler, and D. S. Groth, "Comparison of Tissue Harmonic Imaging with Conventional US in Abdominal Disease1," Radiographics, vol. 20, pp. 1127-1135, July 2000 2000.
[23]S.-Y. Chiou, F. Forsberg, T. B. Fox, and L. Needleman, "Comparing Differential Tissue Harmonic Imaging With Tissue Harmonic and Fundamental Gray Scale Imaging of the Liver," J Ultrasound Med, vol. 26, pp. 1557-1563, November 1, 2007 2007.
[24]B. Ward, A. Baker, and V. Humphrey, "Nonlinear propagation applied to the improvement of resolution in diagnostic medical ultrasound," Journal of the Acoustical Society of America, vol. 101, pp. 143-154, 1997.
[25]R. T. Beyer, Nonlinear acoustics. Woodbury, NY: Acoustical Society of America, 1997.
[26]M. F. Hamilton and D. T. Blackstock, Nonlinear acoustics. San Diego, CA: Academic Press, 1998.
[27]Y. Fujii, N. Taniguchi, I. Akiyama, J.-W. Tsao, and K. Itoh, "A new system for in vivo assessment of the degree of nonlinear generation using the second harmonic component in echo signals," Ultrasound in Medicine & Biology, vol. 30, pp. 1511-1516, 2004.
[28]K. K. Shung, M. B. Smith, and B. Tsui, Principles of medical imaging. San Diego: Academic Press, 1992.
[29]張家瑋, "使用超音波參數影像與紋理分析評分肝臟纖維化程度," 2009.
[30]許政緯, "以Nakagami分布為基礎之三維定量超音波成像及其在生物組織上之應用," 2009.
[31]T. L. Szabo, Diagnostic ultrasound imaging : inside out. Burlington, MA: Elsevier Academic Press, 2004.
[32]沈哲州, "以脈衝反相為基礎之超音波非線性影像," 2004.
[33]F. Tranquart, N. Grenier, V. Eder, and L. Pourcelot, "Clinical use of ultrasound tissue harmonic imaging," Ultrasound in Medicine & Biology, vol. 25, pp. 889-894, 1999.
[34]Q. Ma, Y. Ma, X. Gong, and D. Zhang, "Improvement of tissue harmonic imaging using the pulse-inversion technique," Ultrasound in Medicine & Biology, vol. 31, pp. 889-894, 2005.
[35]E. Brunt, "Grading and staging the histopathological lesions of chronic hepatitis: the Knodell histology activity index and beyond," Hepatology, vol. 31, pp. 241-246, 2000.




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔