(18.210.12.229) 您好!臺灣時間:2021/03/05 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭宏岳
研究生(外文):Hung-Yueh Hsiao
論文名稱:以離體組織實驗模式發展逆散射能量變化為基礎之超音波溫度影像
論文名稱(外文):Ultrasonic Temperature Image Based On The Change In Backscattered Energy : In Vitro Study
指導教授:朱錦洲
指導教授(外文):Chin-Chou Chu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:81
中文關鍵詞:超音波影像逆散射能量變化離體組織實驗即時溫度分布影像
外文關鍵詞:Ultrasound ImageChange In Backscattered EnergyIn VitroLocal Temperature Distribution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著腫瘤燒灼技術的成熟,許多用來偵測溫度影像的方法大量被開發,超音波影像具有非侵入式、系統造價相對便宜,可攜性增加和非游離輻射等優點,使得超音波影像有著強大的優勢,超音波溫度影像的形成有許多方式,其中又以逆散射溫度影像最符合本實驗所期望,故本實驗採用逆散射能量變化理論形成溫度影像。
逆散射能量變化理論相較於其他超音波影像成像方式,具有影像處理快速、直接從能量訊號轉換和溫度範圍37℃到50℃之間溫度反應準確,Arthur學者提出超音波逆散射能量變化溫度影像主要和逆散射子特性有關,本實驗利用離體組織實驗,試著找出逆散射能量變化理論沒有考慮的參數。
離體組織實驗利用仿體和豬肝組織來進行溫度實驗,利用五種不同散射子濃度和三種不同彈性的仿體,分別對散射子濃度和彈性進行分析討論,實驗結果發現散射子濃度和彈性是必須被考慮的參數,接著利用變異前後豬肝組織實驗再加強證明彈性的參數影響,變化結果表示彈性不同絕對會影響逆散射溫度影像的形成。
最後本實驗應用逆散射能量變化理論形成即時溫度分布溫度影像,將溫度影像和超音波引導治療儀結合,對豬肉組織做燒灼實驗,並掃描超音波溫度影像,結果發現逆散射能量變化理論能反應局部溫度變化,可以做到區域性溫度分布超音波溫度影像。


With the progress of tumor ablation technique ,a lot of methods could detect temperature, ultrasound images has many advantage with non-invasive, cheap, portable and non-ionizing radiation, ultrasound temperature images have many ways to form image, change in backscattered energy image is the best temperature image among ultrasound temperature image, change in backscattered energy image is decided to establish temperature image in experiments.
When comparing change in backscattered energy theory with other imaging methods, change in backscattered energy temperature image is more fast, directly, converse original signal and have good accuracy between 37 ℃ to 50 ℃, Dr. Arthur develop change in backscattered energy theory about scatter property, this experiment use in- vitro tissue, and try to find the parameters of backscatter which are without considering in change in backscattered energy theory.
In vitro experiments used phantoms and liver tissue to take the temperature experiment, using five kinds of scatter concentrations and three kinds of elasticity, we found concentrations and elasticity that must be considered, then used liver tissue before and after changing to prove the parameters of elasticity would affect the result of change in backscattered energy temperature image.
Finally, the experimental application of change in backscattered energy theory forms image of local temperature distribution, combination of Tereson and burn system heated on pork tissue, and get the ultrasound temperature images, we already develop the image of local temperature distribution


致謝 I
中文摘要 II
ABSTRACT III
第1章 序論 1
1.1 簡介 1
1.2 研究背景 2
1.3 研究目的 4
第2章 理論介紹 6
2.1 超音波原理 6
2.1.1 基本原理 6
2.1.2 超音波換能器 8
2.1.2.1 單陣元超音波換能器 8
2.1.3 聲阻抗 11
2.1.4 折射和反射 12
2.2 超音波能量變化 13
2.2.1 衰減 13
2.2.2 吸收 14
2.2.3 超音波散射分析 15
2.2.3.1 超音波散射現象 15
2.2.3.2 單一散射子之散射情況 16
2.2.3.3 多散射子之散射情況 17
2.3 逆散射能量變化理論 19
第3章 實驗材料和方法 21
3.1超音波溫度影像系統 21
3.1.1系統架構 21
3.2 定量仿體實驗 23
3.3 豬肝實驗 25
3.4 豬肉燒灼實驗 26
3.5 CBE溫度影像成像方法 30
第4章 實驗結果與討論 35
4.1 仿體實驗 35
4.1.1 傳統超音波影像和CBE溫度影像 35
4.1.2 仿體CBE溫度影像 36
4.1.3 不同區域CBE溫度影像 52
4.1.4 不同濃度CBE溫度影像 55
4.1.5 不同彈性CBE溫度影像 61
4.2 豬肝變異前後實驗 63
4.3 組織燒灼實驗 71
第5章 結論與展望 76
5.1 結論 76
5.2 未來展望 77
參考文獻 78


[1]R. Myerson, W. Straube, E. Moros, B. Emami, H. Lee, C. Perez, and M. Taylor, "Simultaneous superficial hyperthermia and external radiotherapy: report of thermal dosimetry and tolerance to treatment," International Journal of Hyperthermia, vol. 15, pp. 251-266, 1999.
[2]H. Lee, A. Antell, C. Perez, W. Straube, G. Ramachandran, R. Myerson, B. Emami, E. Molmenti, A. Buckner, and M. Lockett, "Specific absorption rate as a predictor of outcome in superficial tumors treated with hyperthermia and radiation therapy," International Journal of Radiation Oncology, Biology & Physics, vol. 40, pp. 365-375, 1998.
[3]J. van der Zee, D. Gonzalez, G. van Rhoon, J. van Dijk, W. van Putten, and A. Hart, "Comparison of radiotherapy alone with radiotherapy plus hyperthermia in locally advanced pelvic tumours: a prospective, randomised, multicentre trial," The Lancet, vol. 355, pp. 1119-1125, 2000.
[4]W. Gunn, "Principles and Practice of Radiation Oncology," JAMA, vol. 279, p. 1406, 1998.
[5]M. Carter, L. Dennis, D. MacFall Ph, R. James, D. Clegg Ph, T. Scott, and D. Wan Ph, "Magnetic resonance thermometry during hyperthermia for human high-grade sarcoma," International Journal of Radiation Oncology* Biology* Physics, vol. 40, pp. 815-822, 1998.
[6]J. Gellermann, W. Wlodarczyk, H. Ganter, J. Nadobny, H. Fahling, M. Seebass, R. Felix, and P. Wust, "A practical approach to thermography in a hyperthermia/magnetic resonance hybrid system: Validation in a heterogeneous phantom* 1," International Journal of Radiation Oncology* Biology* Physics, vol. 61, pp. 267-277, 2005.
[7]J. Nadobny, W. Wlodarczyk, L. Westhoff, J. Gellermann, R. Felix, and P. Wust, "A clinical water-coated antenna applicator for MR-controlled deep-body hyperthermia: A comparison of calculated and measured 3-D temperature data sets," IEEE Transactions on Biomedical Engineering, vol. 52, pp. 505-519, 2005.
[8]K. Leopold, M. Dewhirst, T. Samulski, J. Harrelson, J. Tucker, S. George, R. Dodge, W. Grant, S. Clegg, and L. Prosnitz, "Relationships among tumor temperature, treatment time, and histopathological outcome using preoperative hyperthermia with radiation in soft tissue sarcomas," International journal of radiation oncology, biology, physics, vol. 22, p. 989, 1992.
[9]J. Hand, D. Machin, C. Vernon, and J. Whaley, "Analysis of thermal parameters obtained during phase III trials of hyperthermia as an adjunct to radiotherapy in the treatment of breast carcinoma," International Journal of Hyperthermia, vol. 13, pp. 343-364, 1997.
[10]M. Dewhirst and P. Sneed, "Those in gene therapy should pay closer attention to lessons from hyperthermia," International journal of radiation oncology, biology, physics, vol. 57, pp. 597-599, 2003.
[11]K. Shung, M. Smith, and B. Tsui, Principles of medical imaging: Academic Pr, 1992.
[12]N. Miller, J. Bamber, and P. Meaney, "Fundamental limitations of noninvasive temperature imaging by means of ultrasound echo strain estimation," Ultrasound in medicine & biology, vol. 28, pp. 1319-1333, 2002.
[13]F. Lizzi, R. Muratore, C. Deng, J. Ketterling, S. Alam, S. Mikaelian, and A. Kalisz, "Radiation-force technique to monitor lesions during ultrasonic therapy," Ultrasound in medicine & biology, vol. 29, pp. 1593-1605, 2003.
[14]F. Viola and W. Walker, "A comparison of the performance of time-delay estimators in medical ultrasound," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 50, pp. 392-401, 2003.
[15]W. Liu, U. Techavipoo, T. Varghese, J. Zagzebski, Q. Chen, and F. Lee Jr, "Elastographic versus x-ray CT imaging of radio frequency ablation coagulations: An in vitro study," Medical physics, vol. 31, p. 1322, 2004.
[16]N. Miller, J. Bamber, and G. ter Haar, "Imaging of temperature-induced echo strain: preliminary in vitro study to assess feasibility for guiding focused ultrasound surgery," Ultrasound in medicine & biology, vol. 30, pp. 345-356, 2004.
[17]R. Towa, R. Miller, L. Frizzell, J. Zachary, and W. O''Brien Jr, "Attenuation coefficient and propagation speed estimates of rat and pig intercostal tissue as a function of temperature," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 49, pp. 1411-1420, 2002.
[18]A. Worthington, J. Trachtenberg, and M. Sherar, "Ultrasound properties of human prostate tissue during heating," Ultrasound in medicine & biology, vol. 28, pp. 1311-1318, 2002.
[19]R. Clarke, N. Bush, and G. Ter Haar, "The changes in acoustic attenuation due to in vitro heating," Ultrasound in medicine & biology, vol. 29, pp. 127-135, 2003.
[20]U. Techavipoo, T. Varghese, Q. Chen, T. Stiles, J. Zagzebski, and G. Frank, "Temperature dependence of ultrasonic propagation speed and attenuation in excised canine liver tissue measured using transmitted and reflected pulses," The Journal of the Acoustical Society of America, vol. 115, p. 2859, 2004.
[21]R. Arthur, J. Trobaugh, W. Straube, and E. Moros, "Developing ultrasonic temperature imaging to aid cancer treatment," 2007.
[22]W. Straube and R. Arthur, "Theoretical estimation of the temperature dependence of backscattered ultrasonic power for noninvasive thermometry," Ultrasound in medicine & biology, vol. 20, pp. 915-922, 1994.
[23]R. Seip and E. Ebbini, "Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound," IEEE Transactions on Biomedical Engineering, vol. 42, pp. 828-839, 1995.
[24]R. Arthur, W. Straube, J. Starman, and E. Moros, "Noninvasive temperature estimation based on the energy of backscattered ultrasound," Medical physics, vol. 30, p. 1021, 2003.
[25]R. Arthur, W. Straube, J. Trobaugh, and E. Moros, "Non-invasive estimation of hyperthermia temperatures with ultrasound," International Journal of Hyperthermia, vol. 21, pp. 589-600, 2005.
[26]R. Arthur, J. Trobaugh, W. Straube, and E. Moros, "Temperature dependence of ultrasonic backscattered energy in motion compensated images," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 52, pp. 1644-1652, 2005.
[27]J. Trobaugh, R. Arthur, W. Straube, and E. Moros, "A simulation model for ultrasonic temperature imaging using change in backscattered energy," Ultrasound in medicine & biology, vol. 34, pp. 289-298, 2008.
[28]C. Simon, P. Vanbaren, and E. Ebbini, "Motion compensation algorithm for noninvasive two-dimensional temperature estimation using diagnostic pulse-echo ultrasound," 1998, p. 182¡V192.
[29]R. Maass Moreno and C. Damianou, "Noninvasive temperature estimation in tissue via ultrasound echo shifts. Part I. Analytical model," The Journal of the Acoustical Society of America, vol. 100, p. 2514, 1996.
[30]C. Damianou, N. Sanghvi, F. Fry, and R. Maass-Moreno, "Dependence of ultrasonic attenuation and absorption in dog soft tissues on temperature and thermal dose," The Journal of the Acoustical Society of America, vol. 102, p. 628, 1997.
[31]O. Prakash, M. Fabbri, M. Drocourt, J. Escanye, C. Marchal, M. Gaulard, and J. Robert, "Hyperthermia induction and its measurement using ultrasound," 1980.
[32]B. Rajagopalan, J. Greenleaf, P. Thomas, S. Johnson, and R. Bahn, "Variation of acoustic speed with temperature in various excised human tissues studied by ultrasound computerized tomography," Ultrasonic Tissue Characterization II, p. 227¡V233, 1979.
[33]P. Morse, "KU Ingard, Theoretical Acoustics," New York, NY: McGraw-Hill, pp, vol. 571, p. 595, 1968.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔