(3.238.186.43) 您好!臺灣時間:2021/02/26 12:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃重琨
研究生(外文):Chung-Kun Huang
論文名稱:整合超音波功能性影像判定組織燒灼面積變化與變性程度:可行性研究
論文名稱(外文):Combination of Functional Ultrasonic Images to Evaluate the Tissue Ablation and Denaturation: a Feasibility Study
指導教授:朱錦洲
指導教授(外文):Chin-Chou Chu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:100
中文關鍵詞:超音波B-mode影像Nakagami影像彈性影像
外文關鍵詞:ultrasoundB-mode imageNakagami imageelasticity image
相關次數:
  • 被引用被引用:1
  • 點閱點閱:270
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
超音波影像工具,由於具有非侵入式、對人體無害、檢測費用便宜、儀器價格較便宜、能即時成像以及機動性高等優點,目前已經是醫學上不可或缺的診斷工具,但由於傳統灰階影像必須藉由專業的醫師,來解讀所得到的超音波影像,且灰階影像並無法用來做定量分析,因此為了能夠提供更客觀的判斷方式,在後來才有學者提出許多統計模性,來做定量分析。也有學者針對在發生病變時組織特性的改變,而發展出不同的功能性影像。各種不同的影像技術發展,都是為了能夠做更準確且更有效的診斷。
而本研究則是使用到三種影像技術,分別是B-mode影像、Nakagami影像以及彈性影像,在研究的第一部分,主要是利用仿體實驗,來驗證Nakagami統計參數所代表的物理意義,分別設計了四種不同的仿體,再配合Nakagami影像以及彈性影像來做驗證。
第二部份豬肉組織燒灼實驗,則是鑒於近年來燒灼治療已經是醫學上一項常用的治療技術,但燒灼治療過程中往往無法由肉眼來判斷出治療部位,因此必須藉由其他影像工具的輔助,而在本實驗中,利用對豬肉組織做燒灼,再分別使用B-mode影像、Nakagami影像以及彈性影像作燒灼面積的計算,B-mode影像以及Nakagami影像利用燒灼後組織特性變化,配合影像處理來圈選出燒灼區域,彈性影像則是觀察壓縮過程影像變化來圈選出燒灼區域,目的是找出最佳的影像工具來輔助燒灼治療。


The ultrasound diagnostic imaging has become one of the most used tool in medical examination, since it has the advantages of non-invasive, harmless, low price, real-time and high mobility properties. However, because of ultrasound B-mode image need to be construed by instructed doctor and can not be used to quantitative analysis, many statistical models were proposed in order to provide more objective diagnostic. Besides, some functional ultrasound images were also developed for pathological changes of tissue.
In this study, we utilized three different functional ultrasound images: B-mode image, Nakagami image and elasticity image. In the first part, we used phantom experiment to verify the Nakagami m parameter’s physical mean. We design four different phantom ,and verify Nakagami m parameter with Nakagami imaging and elasticity imaging.
The second part of study is tissue ablation experiment. In recent year, ablation technique has been a common treatment technology. However, it is not easy to find out the affected part with bare eyes during ablation therapy, therefore some imaging tools have been carried out. In this study, we ablated pork tissue by microwave ablation technique, then we used B-mode image, Nakagami image and elasticity image to observe the change of tissue and evaluate the area of tissue ablation in order to find out the suitable imaging tool to aid in ablation.

致謝 I
中文摘要 III
Abstract V
目錄 VII
圖目錄 XI
表目錄 XV
第一章 緒論 1
1.1前言 1
1.2研究背景 3
1.3文獻回顧 4
1.3.1超音波逆散射訊號統計模型 4
1.3.2彈性影像發展 7
1.4研究目的 10
第二章 理論基礎 13
2.1超音波原理及簡介 13
2.1.1超音波基本原理 13
2.1.2超音波之反射與折射 16
2.1.3超音波之衰減 18
2.1.4 超音波換能器與聲場 19
2.2超音波逆散射分析 23
2.2.1散射現象 23
2.2.2單一散射子 23
2.2.3多散射子 26
2.3超音波之逆散射訊號統計模型 28
2.3.1 Rayleigh統計分佈 28
2.3.2 Rician統計分佈 29
2.3.3 K統計分佈 30
2.3.4 Nakagami統計分佈 31
2.4彈性影像成像原理及方法 33
2.4.1 彈性影像發展背景 33
2.4.2 彈性影像成像原理 34
第三章 實驗材料與方法 39
3.1超音波掃描系統 39
3.1.1系統架構 39
3.1.2掃描方式 42
3.2仿體實驗 43
3.2.1仿體製作方式 43
3.2.2仿體掃描步驟 44
3.3豬肉燒灼實驗 47
3.4實驗數據處理 48
第四章 實驗結果與討論 53
4.1仿體實驗 53
4.2彈性模數量測 63
4.3豬肉燒灼實驗 67
4.3.1豬肉燒灼結果 67
4.3.2 燒灼面積計算 81
第五章 結論與展望 93
5.1 結論 93
5.1.1 仿體實驗結論 93
5.1.2 燒灼實驗結論 93
5.2未來展望 95
參考文獻 97


[1]D. Christensen, Ultrasonic bioinstrumentation: John Wiley & Sons Inc, 1988.
[2]K. Shung and G. Thieme, Ultrasonic scattering in biological tissues: CRC, 1993.
[3]P. Shankar, "A general statistical model for ultrasonic backscattering from tissues," ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 47, pp. 727-736, 2000.
[4]J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography: A quantitative method for imaging the elasticity of biological tissues," Ultrasonic Imaging, vol. 13, pp. 111-134, 1991.
[5]C. Burckhardt, "Speckle in Ultrasound B-Mode Scans," Sonics and Ultrasonics, IEEE Transactions on, vol. 25, pp. 1-6, 1978.
[6]T. Tuthill, R. Sperry, and K. Parker, "Deviations from Rayleigh statistics in ultrasonic speckle," Ultrasonic Imaging, vol. 10, pp. 81-89, 1988.
[7]E. Jakeman, P. Pusey, R. Establishment, and W. Malvern, "A model for non-Rayleigh sea echo," IEEE Transactions on Antennas and Propagation, vol. 24, pp. 806-814, 1976.
[8]L. Weng, J. Reid, P. Shankar, and K. Soetanto, "Ultrasound speckle analysis based on the K distribution," The Journal of the Acoustical Society of America, vol. 89, p. 2992, 1991.
[9]P. Shankar, J. Reid, H. Ortega, C. Piccoli, and B. Goldberg, "Use of non-Rayleigh statistics for the identification of tumors inultrasonic B-scans of the breast," IEEE transactions on medical imaging, vol. 12, pp. 687-692, 1993.
[10]V. Narayanan, P. Shankar, and J. Reid, "Non-Rayleigh statistics of ultrasonic backscattered signals," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 41, pp. 845-852, 1994.
[11]P. Shankar, R. Molthen, V. Narayanan, J. Reid, V. Genis, F. Forsberg, C. Piccoli, A. Lindenmayer, and B. Goldberg, "Studies on the use of non-Rayleigh statistics for ultrasonic tissue characterization," Ultrasound in Medicine & Biology, vol. 22, pp. 873-882, 1996.
[12]V. Dutt and J. Greenleaf, "Ultrasound echo envelope analysis using a homodyned K distribution signal model," Ultrasonic Imaging, vol. 16, pp. 265-287, 1994.
[13]P. Shankar, "A model for ultrasonic scattering from tissues based on the K distribution," Physics in medicine and biology, vol. 40, pp. 1633-1649, 1995.
[14]P. Shankar, V. Dumane, J. Reid, V. Genis, F. Forsberg, C. Piccoli, and B. Goldberg, "Classification of ultrasonic B-mode images of breast masses usingNakagami distribution," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 48, pp. 569-580, 2001.
[15]P. Shankar, "Estimation of the Nakagami parameter from log-compressed ultrasonic backscattered envelopes (L)," The Journal of the Acoustical Society of America, vol. 114, p. 70, 2003.
[16]P. Tsui and S. Wang, "The effect of transducer characteristics on the estimation of Nakagami paramater as a function of scatterer concentration," Ultrasound in Medicine & Biology, vol. 30, pp. 1345-1353, 2004.
[17]P. Tsui and C. Chang, "Imaging local scatterer concentrations by the Nakagami statistical model," Ultrasound in Medicine & Biology, vol. 33, pp. 608-619, 2007.
[18]P. Tsui, C. Huang, C. Chang, S. Wang, and K. Shung, "High-frequency ultrasonic Nakagami imaging for characterizing the cataract lens in vitro," Physics in medicine and biology, vol. 52, pp. 6413-6425, 2007.
[19]P. Tsui, C. Yeh, C. Chang, and Y. Liao, "Classification of breast masses by ultrasonic Nakagami imaging: a feasibility study," Physics in medicine and biology, vol. 53, pp. 6027-6044, 2008.
[20]I. Cespedes and J. Ophir, "Reduction of Image Noise in Elastography," Ultrasonic Imaging, vol. 15, pp. 89-102, 1993.
[21]I. Cespedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography: Elasticity Imaging Using Ultrasound with Application to Muscle and Breast In Vivo," Ultrasonic Imaging, vol. 15, pp. 73-88, 1993.
[22]T. Varghese, J. Ophir, and I. Cespedes, "Noise reduction in elastograms using temporal stretching with multicompression averaging," Ultrasound in Medicine & Biology, vol. 22, pp. 1043-1052, 1996.
[23]S. Alam and J. Ophir, "Reduction of signal decorrelation from mechanical compression of tissues by temporal stretching: Applications to elastography," Ultrasound in Medicine & Biology, vol. 23, pp. 95-105, 1997.
[24]R. Righetti, F. Kallel, R. J. Stafford, R. E. Price, T. A. Krouskop, J. D. Hazle, and J. Ophir, "Elastographic characterization of HIFU-induced lesions in canine livers," Ultrasound in Medicine & Biology, vol. 25, pp. 1099-1113, 1999.
[25]J. Ophir, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, R. Righetti, and T. Varghese, "Elastographic imaging," Ultrasound in Medicine & Biology, vol. 26, pp. S23-S29, 2000.
[26] http://electronics.howstuffworks.com/gadgets/audio-music.
[27]K. Shung, M. Smith, and B. Tsui, Principles of medical imaging: Academic Pr, 1992.
[28]http://belley.org/us/lesson01/objective08/index.htm.
[29]許正緯, "以Nakagami分佈為基礎之三維定量超音波成像及其在生物組織上之應用," 國立台灣大學應用力學研究所碩士論文, 2009.
[30]余承霏, "使用超音波訊息理論熵定量生物組織特性,"國立台灣大學應用力學研究所碩士論文, 2008.
[31]J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese, "Elastography: ultrasonic estimation and imaging of the elastic properties of tissues," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 213, pp. 203-233, 1999.
[32]J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. KROUSKO, C. Merritt, R. RIGHETT, R. Souchon, and S. Srinivasan, "Elastography: Imaging the elastic properties of soft tissues with ultrasound," J Med, vol. 29, p. 156, 2002.
[33]http://ultrasonics.bioen.uiuc.edu/research.asp.
[34]陳美如, "超音波彈性影像方法及應用," 國立台灣大學電機工程學研究所碩士論文, 2000.
[35]P. Kuo, P. Li, C. Shun, and J. Lai, "Strain measurements of rabbit Achilles tendons by ultrasound," Ultrasound in Medicine & Biology, vol. 25, pp. 1241-1250, 1999.
[36]W. Yeh, P. Li, Y. Jeng, H. Hsu, P. Kuo, M. Li, P. Yang, and P. Lee, "Elastic modulus measurements of human liver and correlation with pathology," Ultrasound in Medicine & Biology, vol. 28, pp. 467-474, 2002.
[37]張家瑋, "使用超音波參數影像與紋理分析評分肝臟纖維化程度,"國立台灣大學應用力學研究所碩士論文, 2009.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔