(34.237.124.210) 您好!臺灣時間:2021/02/25 19:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳佳真
研究生(外文):Chia-Chen Wu
論文名稱:生物濾床對配水系統之生物穩定性之影響
論文名稱(外文):Impact of Biofiltration on Biostability of Drinking Water Distribution System
指導教授:童心欣
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:72
中文關鍵詞:生物濾床配水前加氯生物穩定性AOCDCAN
外文關鍵詞:biofiltrationdistribution systemprechlorinationAOCbiostabilityDCANformation potential
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
生物濾床較傳統過濾單元更容易去除有機物質及消毒副產物之潛質,近來常為自來水淨水廠加以利用。為了節省更改系統所需之成本及時間,本研究藉由降低前加氯之劑量,來提升現有濾床之生物降解功能。唯此措施對其配水系統之影響尚屬未知。故本研究架設一模擬傳統淨水程序之模廠,觀察以較低前加氯劑量產生之生物濾床將如何影響配水系統之生物穩定性。同時以鹵化乙腈(Haloacetonitriles, HAN) 作為氮系消毒副產物 (Nitrogenous disinfection byproducts, N- DBPs) 之測量指標,了解氮系消毒副產物在自來水處理系統的的生成與宿命。
模廠的前加氯劑量分別為8 mg/L、4 mg/L、2 mg/L。而模廠之過濾單元共有三組濾床,分別為GAC/石英砂、無煙煤/石英砂以及陶瓷珠。每一組濾床之出水經加氯消毒後,固定含有1 mg/L 之餘氯,停留24小時後之出水即為模擬之配水。
研究結果顯示,前加氯劑量對非揮發性之溶解有機碳 (NPDOC) 及生物可利用有機碳 (AOC) 之降解有顯著影響。生物濾床進流之餘氯降低至1 mg/L時,配水之NPDOC去除率自40%提升至60%。進流之餘氯降低至0.1 mg/L時,配水之平均AOC濃度自200 ug acetate-C/L降至50 ug acetate-C/L以下。同時,以即時定量聚合酶連鎖反應 (Quantitative Polymerase Chain Reaction, Q- PCR) 檢測顯示,所有配水均不含Escherichia coli 及Enterococcus sp.。
台灣有管制的三鹵甲烷中,僅有Chloroforms 測出,且其在清水生成之濃度低於80 μg/L之法規標準。所有HAN中,模廠僅測出Dichloroacetonitrile (DCAN),在配水系統之濃度範圍為0.91 μg/L 到 2.49 μg/L,而DCAN生成潛質之濃度範圍為1.56 μg/L 到 9.84 μg/L。兩者之生成及去除皆受原水水質影響,而與濾床材質無關。
總結而言,降低前加氯劑量產生的生物濾床系統不僅可去除有機物質,亦具有良好的生物穩定性。但是本研究之系統無法降低DCAN生成潛質,故DCAN仍與消毒添加的餘氯反應,在配水系統中再度產生。

Biofiltration received much attention in recent years because it could remove organic matters and reduce formation potential of disinfection byprducts (DBPs) efficiently. By lowering prechlorination dosage in conventional drinking water treatment plant, the rapid sand filters could be converted to biofilters without renovation and supply better water quality. A pilot plant with three sets of rapid sand filters was established to study the impacts on the water quality resulted from biofiltration. The three filters received various prechlorination dosages and were packed with granular activated carbon (GAC), anthracite, and ceramic beads, respectively. Each filter effluent disinfected for maintaining the residual chlorine of 1 mg/L-Cl2 and entered to a simulated distribution system.
The results showed that the prechlorination dosage directly affected the removal of non-purgeable dissolved organic carbon (NPDOC) and assimilable organic carbon (AOC) in distribution system. The removal of NPDOC rose from 40% to 60% as the chlorine residual of the filter influent was under 1 mg/L. The averages of AOC decreased from about 200 to 50 ug acetate-C/L as the chlorine residual of the filter influent was below 0.1 mg/L. By Quantitative Polymerase Chain Reaction analysis (Q-PCR), no Escherichia coli and Enterococcus sp. were found as 0.31 to 0.78 mg/L of residual chlorine were maintained in the distribution system.
The detected trichloromethanes (THMs) species was chloroform, which was ranged from 8.5 to 24.1 μg/L in finished water. The dichloroacetonitrile (DCAN) was the only detectable haloacetonitriles chosen as the indicator of nitrogenous DBPs (N-DBPs) in this study. With 2 mg/L prechlorination dosage applied, the filtration process formed lower concentration of DCAN due to the low chlorine residual remained in the influent of filters. The DCAN formation potential ranged from 1.56 to 9.84 μg/L in the distribution system, which resulted the regeneration of DCAN from 0.91 to 2.49 μg/L with the chlorine residual.
In conclusion, this study provides evidences that biofiltration not only reduced possibility for microbial regrowth but also released no pathogens. However, the biofiltration system in this study could not remove the precursors of N-DBPs. Therefore, DCAN could be regenerate by DCAN formation potential and chlorine residual remained in the distribution system.

誌謝 II
ABSTRACTS III
摘要 V
List of Figure IX
List of Tables X
CHAPTER 1 INTRODUCTION 1
1.1 Background/Problem statements 1
1.2 Objectives 2
CHAPTER 2 LITERATURES REVIAW 3
2.1 Biofiltration in drinking water treatment plant 3
2.1.1 Factors influencing the efficiency of biofiltration 3
2.1.2 Biofiltration conducted in Taiwan and other countries 4
2.2 Biostability in distribution system 5
2.2.1 Microbial release from biofilter system 5
2.2.2 Parameters affecting biostability in distribution system 6
2.3 Nitrogenous disinfection byproducts 8
2.3.1 Present regulation of carbonaceous disinfection byproducts 8
2.3.2 Characteristics of nitrogenous disinfection byproducts 8
2.3.3 Formation 10
2.3.4 Occurrence in drinking water treatment plant 12
CHAPTER 3 MATERIALS AND METHODS 14
3.1 Pilot plant 14
3.2 Water parameters monitoring 16
3.2.1 DBPs analysis 17
3.2.1.1 N-DBPs formation potential test 17
3.2.1.2 Analysis of HAN and THMs 18
3.2.2 Assimilable Organic Carbon (AOC) 19
3.2.2.1 Sample collection 19
3.2.2.2 Preparation of stock inoculums 20
3.2.2.3. Inoculation and sample analysis 20
3.3 Pathogens quantification in the distribution simulating system 21
3.3.1 DNA extraction 21
3.3.2 Real- Time PCR 22
CHPATER 4 RESULTS AND DISCUSSION 24
4.1 Occurrence of biodegradation in pilot plant 24
4.2 Biostability of the distribution system 26
4.2.1 Description of the regular and biological parameters 26
4.2.2 Biological parameters in the full process 28
4.2.3 Relation of the chlorine residual and removal of AOC 35
4.2.4 The reaction of chlorine and organic carbon in disinfection process 40
4.3 Regulated DBPs of the pilot plant 42
4.4 N-DBPs and formation potential of the pilot plant 46
4.4.1 Profiles of N-DBPs and formation potential of the pilot plant 46
4.4.2 Association of the chlorine residual and the formation of DCAN in the filtration process 52
4.4.3 Association of DCAN and DCAN formation potential in the filtration 53
4.4.4 Association of the DCAN and other factors in the distribution system 57
CHAPTER 5 CONCLUSIONS 59
REFERENCES 61



1.Camper, A. K.; Lechevallier, M. W.; Broadaway, S. C.; McFeters, G. A., Bacteria associated with antigranulocytes activated carbon particles in drinking water. Appl Environ Microb 1986, 52, (3), 434-438.
2.Stewart, M. H.; Wolfe, R. L.; Means, E. G., Assesment of the bacteriological activity associated with antigranulocytes actibated carbon treatment of drinking water. Appl Environ Microb 1990, 56, (12), 3822-3829.
3.Persson, F.; Heinicke, G.; Uhl, W.; Hedberg, T.; Hermansson, M., Performance of direct biofiltration of surface water for reduction of biodegradable organic matter and biofilm formation potential. Environ. Technol. 2006, 27, (9), 1037-1045.
4.Hozalski, R. M.; Bouwer, E. J.; Goel, S., Removal of natural organic matter (NOM) from drinking water supplies by ozone-biofiltration. Water Science and Technology 1999, 40, (9), 157-163.
5.Pang, C. M.; Liu, W. T., Biological filtration limits carbon availability and affects downstream biofilm formation and community structure. Appl Environ Microb 2006, 72, (9), 5702-5712.
6.Urfer, D.; Huck, P. M.; Booth, S. D. J.; Coffey, B. M., Biological filtration for BOM and particle removal: a critical review. J. Am. Water Work Assoc. 1997, 89, (12), 83-98.
7.Visscher, J. T., Slow Sand Filtration - Design, Operation, and Maintenance. J. Am. Water Work Assoc. 1990, 82, (6), 67-71.
8.McGhee, T. J., Water Supply and Sewerage. 6 ed.; McGraw-Hill: New York, 1991; p 602.
9.Lechevallier, M. W.; McFeters, G. A., Microbiology of activated carbon. In Drinking Water Microbiology, McFeters, G. A., Ed. Springer-Verlag: New York, 1990.
10.Lechevallier, M. W.; Becker, W. C.; Schorr, P.; Lee, R. G., Evaluating the Performance of Biologically-Active Rapid Filters. J. Am. Water Work Assoc. 1992, 84, (4), 136-146.
11.Persson, F.; Langmark, J.; Heinicke, G.; Hedberg, T.; Tobiason, J.; Stenstrom, T. A., Characterisation of the behaviour of particles in biofilters for pre-treatment of drinking water. Water Research 2005, 39, (16), 3791-3800.
12.Booth, S. D. J.; Huck, P. M.; Slawson, R. M.; Butler, B. J.; Ndiongue, S., Removal of selected ozonation by-products in pilot scale drinking water biofilters: compound interactions and mass transfer considerations. J. Water Supply Res Technol.-Aqua 2004, 53, (4), 207-225.
13.Fonseca, A. C.; Summers, R. S.; Hernandez, M. T., Comparative measurements of microbial activity in drinking water biofilters. Water Research 2001, 35, (16), 3817-3824.
14.Price, M. L.; Bailey, R. W.; Enos, A. K.; Hook, M.; Hermanowicz, S. W., Evaluation of ozone biological treatment for disinfection by-products control and biologically stable water. Ozone-Sci. Eng. 1993, 15, (2), 95-130.
15.Winderl, C.; Anneser, B.; Griebler, C.; Meckenstock, R. U.; Lueders, T., Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microb 2008, 74, (3), 792-801.
16.Hsieh, S. L., T.; Wang, G., Biodegradation of MIB and Geosmin with Slow Sand Filters. J Environ Sci Heal A 2010, 45, (8), 951.
17.Chien, C. C.; Kao, C. M.; Chen, C. W.; Dong, C. D.; Wu, C. Y., Application of biofiltration system on AOC removal: Column and field studies. Chemosphere 2008, 71, (9), 1786-1793.
18.Kim, J.; Kang, B., DBPs removal in GAC filter-adsorber. Water Research 2008, 42, (1-2), 145-152.
19.Li, J.; McLellan, S.; Ogawa, S., Accumulation and fate of green fluorescent labeled Escherichia coli in laboratory-scale drinking water biofilters. Water Research 2006, 40, (16), 3023-3028.
20.Pernitsky, D. J.; Finch, G. R.; Huck, P. M., Recovery of attached bacteria from GAC fines and implications for disinfection efficacy. Water Research 1997, 31, (3), 385-390.
21.Scholz, M.; Martin, R. J., Biological control in granular activated carbon beds. Int. Rev. Hydrobiol. 1998, 83, 657-664.
22.USEPA, National drinking water rules and regulation. Registar 1989, 54, (124), 56.
23.Pruss, A., Review of epidemiological studies on health effects from exposure to recreational water. Int. J. Epidemiol. 1998, 27, (1), 1-9.
24.Ibekwe, A. M.; Watt, P. M.; Grieve, C. M.; Sharma, V. K.; Lyons, S. R., Multiplex fluorogenic real-time PCR for detection and quantification of Escherichia coli O157 : H7 in dairy wastewater wetlands. Appl Environ Microb 2002, 68, (10), 4853-4862.
25.Haugland, R. A.; Siefring, S. C.; Wymer, L. J.; Brenner, K. P.; Dufour, A. P., Comparison of Enterococcus measurements in freshwater at two recreational beaches by quantitative polymerase chain reaction and membrane filter culture analysis. Water Research 2005, 39, (4), 559-568.
26.van der Kooij, D., Assimilable Organic Carbon in Drinking Water. In Drinking Water Micribiology, McFeters, G. A., Ed. Springer-Verlag: New York, 1990; p p.57.
27.Escobar, I. C.; Randall, A. A., Assimilable organic carbon (AOC) and biodegradable dissolved organic carbon (BDOC): Complementary measurements. Water Research 2001, 35, (18), 4444-4454.
28.LeChevallier, M. W.; Welch, N. J.; Smith, D. B., Full-scale studies of factors related to coliform regrowth in drinking water. Appl Environ Microb 1996, 62, (7), 2201-2211.
29.Besner, M. C.; Servais, P.; Prevost, M., Efficacy of disinfectant residual on microbial intrusion: A review of experiments. J. Am. Water Work Assoc. 2008, 100, (10), 116-+.
30.McKinney, J. D.; Maurer, R. R. H., Possible factors in the drinking water of laboratory animals causing reproductive failure. Identification and Analysis of Organic pollutants in Water 1976, 5, 417-432.
31.Plewa, M. J.; Wagner, E. D., Comparative Mammalian Cell Toxicity of N-DBPs and C-DBPs. In Disinfection By- products in Drinking Water, Karanfil, T.; Krasner, S. W.; Westerhoff, P.; Xie, Y. F., Eds. American Chemcal Society: Washinton, DC, 2008.
32.IARC, IARC Monograhs on the Evaluation of Carcinogenic Risks to Humans. World Health Organization UK, 1991.
33.Muellner, M. G.; Wagner, E. D.; McCalla, K.; Richardson, S. D.; Woo, Y. T.; Plewa, M. J., Haloacetonitriles vs. regulated haloacetic acids: Are nitrogen-containing DBPs more toxic? Environ. Sci. Technol. 2007, 41, (2), 645-651.
34.WHO, World Health Organization Guidelines for Drinking Water Quality. 3rd ed.; WHO: Geneva, 2004.
35.Mitch, W. A.; Sharp, J. O.; Trussell, R. R.; Valentine, R. L.; Alvarez-Cohen, L.; Sedlak, D. L., N-nitrosodimethylamine (NDMA) as a drinking water contaminant: A review. Environ. Eng. Sci. 2003, 20, (5), 389-404.
36.Lee, W.; Westerhoff, P.; Croue, J. P., Dissolved organic nitrogen as a precursor for chloroform, dichloroacetonitrile, N-Nitrosodimethylamine, and trichloronitromethane. Environ. Sci. Technol. 2007, 41, (15), 5485-5490.
37.Dotson, A.; Westerhoff, P.; Krasner, S. W., Nitrogen enriched dissolved organic matter (DOM) isolates and their affinity to form emerging disinfection by-products. Water Science and Technology 2009, 60, (1), 135-143.
38.Oliver, B. G., Dihaloacetonitriles in drinking-water - algae and fulvic-acid as precursors. Environ. Sci. Technol. 1983, 17, (2), 80-83.
39.Trehy, M. L.; Yost, R. A.; Miles, C. J., Chlorination by-products of amino-acids in natural waters. Environ. Sci. Technol. 1986, 20, (11), 1117-1122.
40.Hoigne, J.; Bader, H., The formation of trichloronitromethane (chloropicrin) and chloroform in a combined ozonation chlorination treatment of drinking water. Water Research 1988, 22, (3), 313-319.
41.Reckhow, D. A.; Singer, P. C., Chlorination by-products in drinking waters - from formation potentials to finished water concentrations. J. Am. Water Work Assoc. 1990, 82, (4), 173-180.
42.Chen, W. H.; Young, T. M., NDMA formation during chlorination and chloramination of aqueous diuron solutions. Environ. Sci. Technol. 2008, 42, (4), 1072-1077.
43.Gerecke, A. C.; Sedlak, D. L., Precursors of N-mitrosodimethylamine in natural waters. Environ. Sci. Technol. 2003, 37, (7), 1331-1336.
44.Krasner, S. W.; Weinberg, H. S.; Richardson, S. D.; Pastor, S. J.; Chinn, R.; Sclimenti, M. J.; Onstad, G. D.; Thruston, A. D., Occurrence of a new generation of disinfection byproducts. Environ. Sci. Technol. 2006, 40, (23), 7175-7185.
45.Charrois, J. W. A.; Arend, M. W.; Froese, K. L.; Hrudey, S. E., Detecting N-nitrosamines in drinking water at nanogram per liter levels using ammonia positive chemical ionization. Environ. Sci. Technol. 2004, 38, (18), 4835-4841.
46.Asami, M.; Oya, M.; Kosaka, K., A nationwide survey of NDMA in raw and drinking water in Japan. Sci. Total Environ. 2009, 407, (11), 3540-3545.
47.Hozalski, R. M.; Arnold, W. A.; Chun, C.; LaPara, T. M.; Lee, J.-Y.; Pearson, C. R.; Zhang, P., Degradation of Halogenated Disinfection Byproducts in Water Distribution Systems. In Disinfection By-Products in Drinking Water: Occurrence, Formation, Health Effects, and Control, Karanfil, T.; Krasner, S. W.; Xie, Y., Eds. Amer Chemical Soc: 2008; pp 334-348.
48.Schmidt, C. K.; Brauch, H. J., N,N-dimethosulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment. Environ. Sci. Technol. 2008, 42, (17), 6340-6346.
49.Zhao, Y. Y.; Boyd, J.; Hrudey, S. E.; Li, X. F., Characterization of new nitrosamines in drinking water using liquid chromatography tandem mass spectrometry. Environ. Sci. Technol. 2006, 40, (24), 7636-7641.
50.APHA, Standards Methods for the Examination of Water and Wastewater. American Public Health Association: Washiton, DC, 1998.
51.Krasner, S. W., Sclimenti, M. J., Guo, Y. C., Hwang, C. J., , Development of DBP and nitrosamine formation potential tests for treated wastewater, reclaimed water, and drinking water. In AWWA Water Quality Technology Conference, Denver, CO: AWWA, 2004.
52.Escobar, I. C.; Randall, A. A., Sample storage impact on the assimilable organic carbon (AOC) bioassay. Water Research 2000, 34, (5), 1680-1686.
53.Lechevallier, M. W.; Shaw, N. E.; Kaplan, L. A.; Bott, T. L., Development of a rapid assimilable organic-carbon method for water. Appl Environ Microb 1993, 59, (5), 1526-1531.
54.Vanderkooij, D.; Visser, A.; Oranje, J. P., Multiplication of fluorescent pseudomonads at low substrate concentration in tap water. Antonie Van Leeuwenhoek Journal of Microbiology 1982, 48, (3), 229-243.
55.Vanderkooij, D.; Hijnen, W. A. M., Substrate Utilization by an Oxalate-Consuming Spirillum Species in Relation to Its Growth in Ozonated Water. Appl Environ Microb 1984, 47, (3), 551-559.
56.Heijnen, L.; Medema, G., Quantitative detection of E-coli, E-coli O157 and other shiga toxin producing E-coli in water samples using a culture method combined with real-time PCR. Journal of Water and Health 2006, 4, (4), 487-498.
57.Frahm, E.; Obst, U., Application of the fluorogenic probe technique (TaqMan PCR) to the detection of Enterococcus spp. and Escherichia coli in water samples. J. Microbiol. Methods 2003, 52, (1), 123-131.
58.Taiwan Environmental Protection Adminstration Exectutive Yuan, T. E., Drinking water quality standards. In 2009.
59.Lechevallier, M. W.; Hassenauer, T. S.; Camper, A. K.; Mcfeters, G. A., Disinfection of bacteria attached to granular activated carbon. Appl Environ Microb 1984, 48, (5), 918-923.
60.Escobar, I. C.; Randall, A. A.; Taylor, J. S., Bacterial growth in distribution systems: Effect of assimilable organic carbon and biodegradable dissolved organic carbon. Environ. Sci. Technol. 2001, 35, (17), 3442-3447.
61.Van der Kooij, D., Assimilable organic carbon (AOC) in drinking water. In Drinking Water Microbiology, McFeters, G. A., Ed. Springer- Verlag: New York, 1990; p 57.
62.Liu, W.; Wu, H.; Wang, Z.; Ong, S. L.; Hu, J. Y.; Ng, W. J., Investigation of assimilable organic carbon (AOC) and bacterial regrowth in drinking water distribution system. Water Research 2002, 36, (4), 891-898.
63.Polanska, M.; Huysman, K.; van Keer, C., Investigation of assimilable organic carbon (AOC) in flemish drinking water. Water Research 2005, 39, (11), 2259-2266.
64.Francisque, A.; Rodriguez, M. J.; Miranda-Moreno, L. F.; Sadiq, R.; Proulx, F., Modeling of heterotrophic bacteria counts in a water distribution system. Water Research 2009, 43, (4), 1075-1087.
65.Lechevallier, M. W.; Lowry, C. D.; Lee, R. G., Disinfecting biofilms in a model distribution-system. J. Am. Water Work Assoc. 1990, 82, (7), 87-99.
66.Miettinen, I.; Vartiainen, T.; Martikainen, P. J., Microbial growth and assimilable organic carbon in Finnish drinking waters. Water Science and Technology 1997, 35, (11-12), 301-306.
67.Srinivasan, S.; Harrington, G. W., Biostability analysis for drinking water distribution systems. Water Research 2007, 41, (10), 2127-2138.
68.Noguera, D. R.; Araki, N.; Rittmann, B. E., Soluble microbial products (Smp) in anaerobic chemostats. Biotechnol Bioeng 1994, 44, (9), 1040-1047.
69.Carlson, K. H.; Amy, G. L., The importance of soluble microbial products (SMPs) in biological drinking water treatment. Water Research 2000, 34, (4), 1386-1396.
70.Charnock, C.; Kjonno, O., Assimilable organic carbon and biodegradable dissolved organic carbon in Norwegian raw and drinking waters. Water Research 2000, 34, (10), 2629-2642.
71.Dotson, A.; Westerhoff, P., Occurrence and removal of amino acids during drinking water treatment. J. Am. Water Work Assoc. 2009, 101, (9), 101-+.
72.Reckhow, D. A.; Platt, T. L.; MacNeill, A. L.; McClellan, J. N., Formation and degradation of dichloroacetonitrile in drinking waters. J. Water Supply Res Technol.-Aqua 2001, 50, (1), 1-13.
73.Zhang, P.; Lapara, T. M.; Goslan, E. H.; Xie, Y. F.; Parsons, S. A.; Hozalski, R. M., Biodegradation of haloacetic acids by bacterial isolates and enrichment cultures from drinking water systems. Environ. Sci. Technol. 2009, 43, (9), 3169-3175.
74.Tung, H. H.; Xie, Y. F., Association between haloacetic acid degradation and heterotrophic bacteria in water distribution systems. Water Research 2009, 43, (4), 971-978.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔