(3.239.33.139) 您好!臺灣時間:2021/03/05 19:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許子承
研究生(外文):Tzu-Cheng Hsu
論文名稱:以薄膜外加電場應用於含全氟辛酸廢水之研究
論文名稱(外文):Study of PFOA-contained wastewater treated by electro-membrane filtration
指導教授:李公哲李公哲引用關係
指導教授(外文):Kung-Cheh Li
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:86
中文關鍵詞:薄膜外加電場過濾程序全氟辛酸二氧化矽腐質酸電泳電滲透
外文關鍵詞:Electro-membrane filtrationPFOASiO2Humic acidElectrophoreticElectroosmosis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:202
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全氟碳化物(perfluorinated compounds, PFCs)因在環境中不易被分解且具有生物累積等特性,近年來受到各領域之關注,目前由於半導體產業仍未實質找到其替代物質,仍為環境中一主要汙染源。全氟辛酸(perfluorooctanoic acid, PFOA)為PFCs中最具代表物質之一,比起其他PFCs更具毒性、更難以分解。由於實場廢水成分複雜,故本研究以濃度0%、0.05%、0.1%二氧化矽(SiO2)及0 mg/L、20 mg/L、40 mg/L腐質酸(HA),分別做為廢水中無機及有機物之代表,配置成九種不同背景基質之水樣,並討論外加電場在薄膜過濾程序中對通量及PFOA去除率之影響。
通量部分,二氧化矽及腐質酸皆會對薄膜表面造成積垢現象,施加於臨界電場95 V/cm時,最終過濾之正規化通量比值J/J0從4.2%提升到75% (SiO2=0.05%),腐質酸則是從56%提升到100% (HA=20 mg/L, E=142.5 V/cm)。在阻力分析上,可觀察到總積垢阻力(Rf)隨著電場強度增加而減小,但在大於臨界電場時,阻力又會以不可逆積垢(Ri)增加。
去除率部分,在無施加電場下,薄膜程序無法直接經由篩濾作用提升PFOA去除率;但當背景基質僅有0.1%二氧化矽時,PFOA去除率提高至31%,此因為薄膜表面二氧化矽積垢使其帶電性增加,利用靜電斥力避免PFOA靠近膜面;當背景基質僅有腐質酸時,去除率則不因薄膜表面積垢而有大幅度之改變。施加電場下,PFOA可直接經由電泳作用力分離,而去除率隨著電場強度升高而提升(SiO2=0%, HA=0 mg/L),於142.5 V/cm電場中去除率可達49%。若背景基質存在二氧化矽於臨界電場95 V/cm下,其去除率可從41% (SiO2=0%)提升到79% (SiO2=0.1%),此亦為薄膜表面積垢提高靜電斥力使然;但在背景基質含腐質酸之情況下則對去除率無影響。此外背景基質同時存在二氧化矽及腐質酸時,於47.5 V/cm電場強度下,PFOA去除率會隨腐質酸濃度增加而下降,其因腐質酸積垢會使薄膜表面電位降低。綜合以上結果,以本程序應用於含全氟辛酸之模擬水樣,在兼顧水質水量之考量下,最適操作之電場強度應以臨界電場附近最佳。
由實場廢水與模擬水樣實驗比較,顯示實場廢水亦因外加電場之施加,可有效地提升PFOA之去除率,顯示外加電場具有實務應用之可行性,惟實場廢水之混凝加藥之前處理,會導致水中導電度大幅增加,造成通量及去除率下降。故若能應用此模組於混凝處理前之廢水,對於實務應用之競爭性將能有所提升。


Recently, it has been concerned by every field that PFCs have the characteristics of persistence and bioaccumulation. Because semiconductor industry cannot find the substitute of PFCs, it is still one of the major pollution sources in our environment. Compared to other PFCs, PFOA has more toxicity and is hard to decompose. Therefore, PFOA is the most representative material of PFCs. Because of the complexity of wastewater, this study used 0%, 0.05%, 0.1% SiO2 and 0 mg/L, 20 mg/L, 40 mg/L humic acid (HA) as the representatives of inorganic and organic matters of wastewater to dispense nine various background matrix samples. In addition, the study investigated the strength of electric field that affects the quantity and quality of filtrate.
For the flux part, both of SiO2 and humic acid cause the fouling of membrane surface. Under 95 V/cm electric field, normalized flux ratio (J/J0) raised from 4.2% to 75% (SiO2=0.05%) and 56% to 100% (HA=20 mg/L, E=142.5 V/cm), respectively. In resistance analysis, it was observed that total resistance (Rf) would decrease along with the strength of electric field. However, resistance would increase due to irreversible resistance (Ri) when electric field was above the critical electric field strength.
For the rejection part, membrane process could not separate PFOA via screening mechanism without electric field. The rejection of PFOA elevated to 31% when background matrix contained 0.1% SiO2, because membrane surface charge is changed due to SiO2 fouling. However, PFOA rejection would not change when membrane fouling by humic acid. PFOA can be directly separated by electrophoretic force, and its rejection would increase with application of electric field strength. Under background matrix contained 0.1% SiO2, PFOA rejection increased from 41% (0% SiO2) to 79% (0.1% SiO2) with 95 V/cm of critical electric field strength, which also revealed the effect of electrostatic repulsion. On the other hand, under background matrix contained HA, PFOA rejection had no significant change with electric field application. Moreover, PFOA rejection would decrease with the increase of humic acid concentration when background matrix contained SiO2 (47.5 V/cm). This result could attribute to the humic acid fouling which decreased membrane surface charge. In conclusion, the above outcomes showed that the optimal operating electric field is close to the critical electric field.
According to the comparison between wastewater and simulation sample, the data demonstrated that PFOA rejection could be improved by application of electric field. However, wastewater treatment plants with the coagulation/flocculation process that could greatly increase conductivity, the flux and rejection would be reduced. As the result, if electro-membrane filtration could be applied in front of coagulation/flocculation process, it would improve its rejection efficiency.


謝誌 III
摘要 IV
Abstract VI
第一章 研究緣起與目的 1
1.1研究動機與目的 1
1.2研究項目 1
第二章 文獻回顧 3
2.1全氟辛酸 3
2.1.1物化特性 3
2.1.2在環境中之宿命 5
2.1.3對人體健康影響 5
2.1.4 PFOA處理方式 6
2.2半導體產業廢水 8
2.3薄膜處理程序 8
2.3.1水處理薄膜種類與操作形式 8
2.3.2薄膜程序的問題與限制 9
2.3.3濃度極化 9
2.3.4膜面積垢 11
2.3.5減緩薄膜積垢的方法 14
2.4薄膜外加電場掃流過濾程序 14
2.4.1電動力現象 14
2.4.2臨界電場理論 16
2.4.3操作因子對於外加電場薄膜程序之影響 17
2.4.4薄膜外加電場的相關研究 19
第三章 實驗內容、步驟、方法 21
3.1實驗流程 21
3.2實驗設備與步驟 22
3.2.1實驗設備與材料 22
3.2.2實驗步驟 24
3.3水質參數分析 25
3.4材料表面分析 28
3.4.1薄膜表面電位量測 28
3.4.2薄膜表面觀測 29
第四章 結果與討論 30
4.1水質參數分析 30
4.2薄膜過濾通量與操作參數之關聯性探討 40
4.2.1背景基質對通量之影響(E=0 V/cm) 40
4.2.2電場強度對通量之影響 44
4.2.2.1背景基質對通量之影響 45
4.2.2.2混和背景基質對於通量之影響 51
4.2.3薄膜阻力分析 54
4.3薄膜去除效率與相關操作參數之關聯性探討 59
4.3.1背景基質對PFOA去除率之影響(E=0 V/cm) 59
4.3.2電場強度對PFOA去除率之影響 62
4.3.2.1背景基質對PFOA去除率之影響 63
4.3.2.2混和背景基質對PFOA去除率之影響 65
4.3.3二氧化矽及電場強度對腐植酸去除率之影響 67
4.4薄膜電性分析 70
4.5以外加電場應用於實場廢水之可行性研究 72
第五章 結論與建議 77
5.1結論 77
5.2建議 79
參考文獻 81
附錄 85


3M (2005). "Health consultation – perfluorochemical releases at the 3M-cottage grave facility. U.S. Department of Health and Human Services, Atlanta, Georgia.".

Bridi, K. S., Ed. (2003). Surface and Colloid Chemistry.

Chen, J., P.-y. Zhang and J. Liu (2007). "Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light." Journal of Environmental Sciences 19(4): 387-390.

Elzo, D., I. Huisman, E. Middelink and V. Gekas (1998). "Charge effects on inorganic membrane performance in a cross-flow microfiltration process." Colloids and Surfaces A: Physicochemical and Engineering Aspects 138(2-3): 145-159.

Gilliland, F. D. M., PhD; Mandel, Jack S. PhD, MPH (1993). "Mortality Among Employees of a Perfluorooctanoic Acid Production Plant."

Goss, K.-U. (2007). "The pKa Values of PFOA and Other Highly Fluorinated Carboxylic Acids." Environmental Science & Technology 42(2): 456-458.

Hori, H., E. Hayakawa, H. Einaga, S. Kutsuna, K. Koike, T. Ibusuki, H. Kiatagawa and R. Arakawa (2004). "Decomposition of Environmentally Persistent Perfluorooctanoic Acid in Water by Photochemical Approaches." Environmental Science & Technology 38(22): 6118-6124.

Hori, H., A. Yamamoto, E. Hayakawa, S. Taniyasu, N. Yamashita, S. Kutsuna, H. Kiatagawa and R. Arakawa (2005). "Efficient Decomposition of Environmentally Persistent Perfluorocarboxylic Acids by Use of Persulfate as a Photochemical Oxidant." Environmental Science & Technology 39(7): 2383-2388.

Hosse, M. and K. J. Wilkinson (2001). "Determination of Electrophoretic Mobilities and Hydrodynamic Radii of Three Humic Substances as a Function of pH and Ionic Strength." Environmental Science & Technology 35(21): 4301-4306.

Jr., J. D. H., L. F. Lawler and C. H. A. Kuo (1977). "A solid/liquid separation process based on cross flow and electrofiltration." AIChE Journal 23(6): 851-859.

Jucker, C. and M. M. Clark (1994). "Adsorption of aquatic humic substances on hydrophobic ultrafiltration membranes." Journal of Membrane Science 97: 37-52.

Kubwabo, C., N. Vais and F. M. Benoit (2004). "A pilot study on the determination of perfluorooctanesulfonate and other perfluorinated compounds in blood of Canadians." Journal of Environmental Monitoring 6(6): 540-545.

Kukizaki, M. (2009). "Relation between salt rejection and electrokinetic properties on Shirasu porous glass (SPG) membranes with nano-order uniform pores." Separation and Purification Technology 69(1): 87-96.

Lazarova, Z. and W. Serro (2002). "Electromembrane separation of mineral suspensions: Influence of process parameters." Separation Science and Technology 37(3): 515 - 534.

Lead, J. R., E. Balnois, M. Hosse, R. Menghetti and K. J. Wilkinson "Characterization of Norwegian natural organic matter: Size, diffusion coefficients, and electrophoretic mobilities." Environment International 25(2-3): 245-258.

Leonard, R. C., K. H. Kreckmann, C. J. Sakr and J. M. Symons (2008). "Retrospective Cohort Mortality Study of Workers in a Polymer Production Plant Including a Reference Population of Regional Workers." Annals of Epidemiology 18(1): 15-22.

Li, F.-A., J.-L. Huang, S.-Y. Shen, C.-W. Wang and G.-R. Her (2009). "Development of a Liquid-Junction/Low-Flow Interface for Phosphate Buffer Capillary Electrophoresis Mass Spectrometry." Analytical Chemistry 81(7): 2810-2814.

MDH (2007). Environmental health information – Perfluorochemicals and health. M. D. o. H. (MDH).

Melissa M. Schultz, a. C. P. H., b Carin A. Huset,a Richard G. Luthy,b Douglas F. Barofsky,a and Jennifer A. Fieldac* (2006). "Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility."

Moriwaki, H., Y. Takagi, M. Tanaka, K. Tsuruho, K. Okitsu and Y. Maeda (2005). "Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid." Environmental Science & Technology 39(9): 3388-3392.

Mulder, M., Ed. (1996). Basic Principles of Membrane Technology.

Mulder, M. (1996). Basic Principles of Membrane Technology.

Nakatsuka, S., I. Nakate and T. Miyano (1996). "Drinking water treatment by using ultrafiltration hollow fiber membranes." Desalination 106(1-3): 55-61.

NCDWQ (2006). Recommended Interim Maximum Allowable Concentration for Perfluorooctanoic Acid. N. C. D. o. W. Q. (NCDWQ).

NJDEP (2007). Guidance for PFOA in drinking water at Pennsqrove water supply company. N. J. D. o. E. P. (NJDEP).

Panchangam, S. C., A. Y.-C. Lin, K. L. Shaik and C.-F. Lin (2009). "Decomposition of perfluorocarboxylic acids (PFCAs) by heterogeneous photocatalysis in acidic aqueous medium." Chemosphere 77(2): 242-248.

pollutants, S. C. o. p. o. (2009). Governments unite to step-up reduction on global DDT reliance and add nine new chemicals under international treaty.

Prevedouros, K., I. T. Cousins, R. C. Buck and S. H. Korzeniowski (2005). "Sources, Fate and Transport of Perfluorocarboxylates." Environmental Science & Technology 40(1): 32-44.

Radovich, J. M., B. Behnam and C. Mullon (1985). "Steady-State Modeling of Electroultrafiltration at Constant Concentration." Separation Science and Technology 20(4): 315 - 329.

Ricq, L., A. Pierre, J.-C. Reggiani, J. Pagetti and A. Foissy (1998). "Use of electrophoretic mobility and streaming potential measurements to characterize electrokinetic properties of ultrafiltration and microfiltration membranes." Colloids and Surfaces A: Physicochemical and Engineering Aspects 138(2-3): 301-308.

Robinson, C. W., M. H. Siegel, A. Condemine, C. Fee, T. Z. Fahidy and B. R. Glick (1993). "Pulsed-electric-field crossflow ultrafiltration of bovine serum albumin." Journal of Membrane Science 80(1): 209-220.

Shigeo Fujii, S. T., Nguyen Pham Hong Lien, Yong Qiu and Chongrak Polprasert (2007). "New POPs in the water environment: distribution, bioaccumulation and treatment of perfluorinated compounds – a review paper."

Sinclair, E. and K. Kannan (2006). "Mass Loading and Fate of Perfluoroalkyl Surfactants in Wastewater Treatment Plants." Environmental Science & Technology 40(5): 1408-1414.

Vecitis, C., H. Park, J. Cheng, B. Mader and M. Hoffmann (2009). "Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA)." Frontiers of Environmental Science & Engineering in China 3(2): 129-151.

Visvanathan, C. and R. B. Aim (1989). "Application of an Electric Field for the Reduction of Particle and Colloidal Membrane Fouling in Crossflow Microfiltration." Separation Science and Technology 24(5): 383 - 398.

Visvanathan, C. and R. Ben aim (1989). "Studies on colloidal membrane fouling mechanisms in crossflow microfiltration." Journal of Membrane Science 45(1-2): 3-15.

Wojcik, L., K. Korczak, B. Szostek and M. Trojanowicz (2006). "Separation and determination of perfluorinated carboxylic acids using capillary zone electrophoresis with indirect photometric detection." Journal of Chromatography A 1128(1-2): 290-297.

Wojcik, L., B. Szostek, W. Maruszak and M. Trojanowicz (2005). "Separation of perfluorocarboxylic acids using capillary electrophoresis with UV detection." ELECTROPHORESIS 26(6): 1080-1088.

Wakeman, R. J. and M. N. Sabri (1995). "UTILIZING PULSED ELECTRIC-FIELDS IN CROSS-FLOW MICROFILTRATION OF TITANIA SUSPENSIONS." Chemical Engineering Research & Design 73(A4): 455-463.

Wakeman, R. J. and C. J. Williams (2002). "Additional techniques to improve microfiltration." Separation and Purification Technology 26(1): 3-18.

Wang, Y., P. Y. Zhang, G. Pan and H. Chen (2008). "Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254 nm UV light." Journal of Hazardous Materials 160(1): 181-186.

Yuan, W. and A. L. Zydney (1999). "Humic acid fouling during microfiltration." Journal of Membrane Science 157(1): 1-12.

陳玠瑋 (2008). "2008年全球晶圓代工產業市場分析." http://www.teema.org.tw/epaper/20090513/industrial001.html.

劉訓瑜 (2000). 化學機械研磨廢水混凝沉澱效能評估. 國立交通大學環境工程研究所.

鄧淞駿 (2007). 薄膜外加電場處理程序;水中天然有機物及黏土礦物之影響研究. 國立台灣大學環境工程學研究所.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔