(44.192.10.166) 您好!臺灣時間:2021/03/06 20:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐啟紘
研究生(外文):Chi-Hung Hsu
論文名稱:應用靜電微粒懸浮系統評估生物氣膠-酵母菌活性
論文名稱(外文):Survivability of Yeast in an Electrodynamic Balance
指導教授:陳志傑陳志傑引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:37
中文關鍵詞:靜電微粒懸浮腔生物氣膠酵母菌
外文關鍵詞:Electrodynamic balance (EDB)BioaerosolYeast
相關次數:
  • 被引用被引用:0
  • 點閱點閱:285
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
過去在微生物活性探討上,多將其置於液體基質內或物體表面,然而,此仍與懸浮在空氣中之微生物狀態有所不同,因兩者所受環境因子影響程度不一。透過電力與微粒重力達平衡,靜電微粒懸浮腔可有效懸浮單一微粒,故從過去至現今,多使用在微粒物化特性探討上。近年來由於自動控制系統、影像擷取裝置的結合與進步,使靜電微粒懸浮腔穩定性更為增加,並有效節省在長時間研究人力的花費。本研究即將電微粒懸浮腔與自動控制系統做結合,應用於生物氣膠-酵母菌活性探討,而此也為首次靜電微粒懸浮腔研究。

實驗系統主要分為下列幾部分︰1.雙環型靜電微粒懸浮腔(利用直流與交流電電長懸浮單一微粒) 2.雷射光光源(0~100 mW, λ= 532nm)(使微粒產生散射光,而被影像擷取系統捕捉影像) 3.自動控制系統(Labview 8.2人機介面程式對懸浮單一微粒做位置上控制)。在生物氣膠活性測試前,本研究先對5, 10, 15 μm壓克力微粒做系統穩定性測試,其操作條件為直流與交流電電壓分別是200~1000 V和1.3 kV、頻率350~1000 Hz。由於酵母菌(Saccharomyces cerevisiae YPH499)在粒徑上可達5~10 μm,且適合本系統可捕捉之粒徑範圍(3~15 μm),故被作為實驗使用之生物氣膠菌種選擇。生物氣膠產生方式採用改良式霧化產生器,使其可有效產生酵母菌微粒。單一懸浮酵母菌以帶電金屬棒吸引並收集至固態培養基中培養,最終對其活性做判斷。系統中影響生物氣膠活性因子之變項有雷射光強度、直流與交流電電場、相對濕度與懸浮時間。

結果顯示,不同粒徑壓克力微粒與酵母菌皆可長時間被懸浮,即本系統表現穩定。靜電微粒懸浮腔內相對濕度、懸浮時間對酵母菌存活率表現,當相對濕度由20至75%時,其存活率會下降約21% (4%至27%);而懸浮時間由2分鐘上升至60分鐘時,存活率下降約17% (31%至14%)。上述酵母菌存活率結果可發現,其明顯與經氣膠產生器生成要低,推測應與系統雷射光、電場、靜電微粒懸浮腔內相對濕度、懸浮時間、金屬棒吸引電壓與培養處理方式有關。綜合實驗結果可知,改善培養處理方式後可有效增加酵母菌細胞存活率,即在相同相對濕度(55%)與懸浮時間(2分鐘)下,由原本31%增加至56%。由於此分析方法為使用傳統培養法所得到之結果,故與亞甲基藍染劑法判斷細胞活性之存活率有所差異。


Previous studies on survivability of microorganisms were mainly carried out by placing microbial-laden liquid, such as serum, on the surface. However, these viability test data could not reflect the survivability of microorganisms suspended in the air because the environmental stress levels would be different. Electrodynamic balance (EDB) has long been used to characterize the physical and chemical properties of single particle fixed and airborne in the chamber by electrostatic forces. With the assistance of video capture and automatic feedback control system, the EDB became more advanced and versatile. In the present study, an EDB system was used, probably for the first time, to evaluate the survivability of yeast cell.

The experimental system consisted of (1) a double-ring EDB chamber which was designed to levitate one particle with DC and AC field, (2) a laser beam (I= 0~100 mW, λ= 532nm) to illuminate particle, and a digital camera (400X) to capture image of the target particle, and (3) an automatic control system written in Labview 8.2. Before introducing bioaerosol to EDB, the system was tested and optimized by using monodisperse (5, 10, 15 μm) acrylic powders. The operating DC and AC voltages were 200~1000 V and 1.3 kV/frequency= 350~1000 Hz, respectively. Yeast cell (Saccharomyces cerevisiae YPH499) was chosen for its size, falling right into the working range of EDB (3 to tens μm). The yeast aerosols were generated by using a Wright nozzle modified for maximum aerosol output. A retrieving probe was made to capture the yeast cell levitated in the EDB. The retrieved cell was then cultivated to examine the viability. Laser light intensity, chamber temperature, humidity, and retention time in the chamber are among the principal operating parameters.
The results showed that the EDB system could retain supermicrometer-sized (5, 10, 15 μm) acrylic powders and yeast aerosols in the chamber for hours or even days. The survival rate of yeast cells was around 5%, after retrieved from the EDB chamber with RH= 20% and then cultivated on YEPD agar. The survival rate increased (from 4 to 27%) with increasing relative humidity (from 20 to 75%) in the EDB chamber. The survival rate decreased with increasing retention in the chamber, for example, from 31% of 2 min down to 14% of 60 min. These survival rates are much lower than yeast cells in distilled water before aerosolization (90%) and yeast cells after aerosolization (80%). However, it should be noticed that both high survival rates were based on viability test following methylene blue staining procedure, which might not be exactly the same with YEPD agar cultivation method.

誌謝 I
中文摘要 II
英文摘要 IV
圖目錄 VII
表目錄 VIII
第一章、研究背景與目的 1
第二章、文獻探討 3
2.1靜電微粒懸浮系統 3
2.2生物氣膠 4
第三章、實驗材料與方法 10
3.1靜電微粒懸浮系統 10
3.1.1雙環型靜電微粒懸浮腔 10
3.1.2自動控制系統 10
3.1.3生物氣膠產生器 11
3.2目標微粒 11
3.3壓克力微粒測試 11
3.4生物氣膠測試 12
3.5酵母菌培養、懸浮液配置與活性分析 12
第四章、實驗結果和討論 14
4.1靜電微粒懸浮系統 14
4.2生物氣膠活性測試 15
第五章、結論與建議 19
參考文獻 20

圖目錄
圖 1. Schematic diagram of the electrodynamic balance system. 23
圖 2. The close look of the electrodynamic balance. 24
圖 3. Images of the 5, 10, 15 μm acrylic powder at MR= 300X, Elaser= 30 mW. 25
圖 4. Images of the acrylic powder and yeast cell at MR= 300X, Elaser= 30 mW. 26
圖 5. The stability of EDB while levitating 5, 10, 15 μm acrylic powders. 27
圖 6. The DC field decreasing with time while levitating yeast cells. 28
圖 7. The survival rate of yeast cells at different dye concentration. 29
圖 8. Effect of storage time on the survival rate of yeast cells in sterilized water. 30
圖 9. The survival rate of yeast cells after aerosolization. 31
圖 10. Yeast (S. cerevisiae) colonies on YEPD plate after using probe retrieved. 32
圖 11. The survival rate of yeast cells retrieved from EDB at RH= 55%, Ts= 5 min. 33
圖 12. The survival rate of yeast cells retrieved from EDB at different RH, Ts= 30 min. 34
圖 13. The survival rate of yeast cells retrieved from EDB at different elapsed time, RH= 55%. 35

表目錄
表 1. The minimum laser energy to automatic control system with different particles. 36
表 2. The survival rate of yeast cells retrieved from EDB with different ways at RH= 55%, Ts= 2 min. 37




Brockmann, J. E. (1993). "Sampling and transport of aerosols." Aerosol measurement. Principles, techniques and applications: 77-111.
Burge, H. A. (1995). "Bioaerosols."
Charlie, W. S. (1998). "Yeast products in the feed industry."
Dale, R. M. (1941). "Differential staining of living and dead yeast cells." Journal of Food Science 6(4): 361-371.
Deacon, L. J., E. Janie Pryce-Miller, J. C. Frankland, B. W. Bainbridge, P. D. Moore and C. H. Robinson (2006). "Diversity and function of decomposer fungi from a grassland soil." Soil Biology and Biochemistry 38(1): 7-20.
Fischer, G. and W. Dott (2003). "Relevance of airborne fungi and their secondary metabolites for environmental, occupational and indoor hygiene." Archives of Microbiology 179(2): 75-82.
Griffiths, W. D., I. W. Stewart, J. M. Clark and I. L. Holwill (1999). "Procedures for the characterisation of bioaerosol particles. Part I: aerosolisation and recovery agent effects." Aerobiologia 15(4): 267-280.
Griffiths, W. D., I. W. Stewart, J. M. Clark and I. L. Holwill (2001). "Procedures for the characterisation of bioaerosol particles. Part II: Effects of environment on culturability." Aerobiologia 17(2): 109-119.
Griffiths, W. D., I. W. Stewart, A. R. Reading and S. J. Futter (1996). "Effect of aerosolisation, growth phase and residence time in spray and collection fluids on the culturability of cells and spores." Journal of Aerosol Science 27(5): 803-820.
Heldal, K. K., A. S. Halstensen, J. Thorn, P. Djupesland, I. Wouters, W. Eduard and T. S. Halstensen (2003). "Upper airway inflammation in waste handlers exposed to bioaerosols." Occupational and Environmental Medicine 60(6): 444-450.
Jung, J. H., C. Ho Lee, J. Eun Lee, J. Hyun Lee, S. Soo Kim and B. U. Lee (2009). "Design and characterization of a fungal bioaerosol generator using multi-orifice air jets and a rotating substrate." Journal of Aerosol Science 40(1): 72-80.
Jung, J. H., J. E. Lee and S. S. Kim (2009). "Thermal effects on bacterial bioaerosols in continuous air flow." Science of The Total Environment 407(16): 4723-4730.
Lin, C.-Y. and C.-S. Li (2002). "Control Effectiveness of Ultraviolet Germicidal Irradiation on Bioaerosols." Aerosol Science and Technology 36(4): 474-478.
Lin, W.-H. (1999). "Evaluation of Impingement and Filtration Methods for Yeast Bioaerosol Sampling." Aerosol Science and Technology 30(2): 119-126.
Macher, J., H. A. Ammann, D. K. Milton, H. A. Burge and P. R. Morey (1999). "Bioaerosol: Assessment and Control." ACGIH.
Mainelis, G. (1999). "Collection of Airborne Microorganisms by Electrostatic Precipitation." Aerosol Science and Technology 30(2): 127 - 144.
Mainelis, G., D. Berry, H. Reoun An, M. Yao, K. DeVoe, D. E. Fennell and R. Jaeger (2005). "Design and performance of a single-pass bubbling bioaerosol generator." Atmospheric Environment 39(19): 3521-3533.
Mainelis, G., K. Willeke, A. Adhikari, T. Reponen and S. A. Grinshpun (2002). "Design and Collection Efficiency of a New Electrostatic Precipitator for Bioaerosol Collection." Aerosol Science and Technology 36(11): 1073-1085.
Monazam, E. R., D. J. Maloney and L. O. Lawson (1989). "Measurements of heat capacities, temperatures, and absorptivities of single particles in an electrodynamic balance." Review of Scientific Instruments 60(11): 3460-3465.
Neas, L. M., D. W. Dockery, H. Burge, P. Koutrakis and F. E. Speizer (1996). "Fungus spores, air pollutants, and other determinants of peak expiratory flow rate in children." American Journal of Epidemiology 143(8): 797-807.
Olsen, A. P., R. C. Flagan and J. A. Kornfield (2006). "Single-particle levitation system for automated study of homogeneous solute nucleation." Review of Scientific Instruments 77(7): 073901-7.
Reponen, T., K. Willeke, V. Ulevicius, S. A. Grinshpun and J. Donnelly (1997). "Techniques for Dispersion of Microorganisms into Air." Aerosol Science and Technology 27(3): 405-421.
Reponen, T., K. Willeke, V. Ulevicius, A. Reponen and S. A. Grinshpun (1996). "Effect of relative humidity on the aerodynamic diameter and respiratory deposition of fungal spores." Atmospheric Environment 30(23): 3967-3974.
Rusca, S., N. Charrière, P. Droz and A. Oppliger (2008). "Effects of bioaerosol exposure on work-related symptoms among Swiss sawmill workers." International Archives of Occupational and Environmental Health 81(4): 415-421.
Sageev, G., J. H. Seinfeld and R. C. Flagan (1986). "Particle sizing in the electrodynamic balance." Review of Scientific Instruments 57(5): 933-936.
Sami, M., M. Ikeda and S. Yabuuchi (1994). "Evaluation of the alkaline methylene blue staining method for yeast activity determination." Journal of Fermentation and Bioengineering 78(3): 212-216.
Shale, K. and J. F. R. Lues (2007). "The Etiology of Bioaerosols in Food Environments." Food Reviews International 23(1): 73-90.
Stewart, I. W., G. Leaver and S. J. Futter (1997). "The enumeration of aerosolised Saccharomyces cerevisiae using bioluminescent assay of total adenylates." Journal of Aerosol Science 28(3): 511-523.
Umhauer, H. and M. Bottlinger (1991). "Effect of particle shape and structure on the results of single-particle light-scattering size analysis." Appl. Opt. 30(33): 4980-4986.
Williams, D. (2009). "The Methylene Blue Staining Procedure and Yeast Viability."
Yao, M., G. Mainelis and H. R. An (2005). "Inactivation of Microorganisms Using Electrostatic Fields." Environmental Science & Technology 39(9): 3338-3344.
陳贊宇 (2007). "氣膠微粒靜電懸浮控制系統之研發 (Research and development of aerosol particle electrostatic suspension control system)." 元智大學: 40.
勞工安全衛生研究所 (2003). "醫療院所職業性生物危害預防指引-空氣傳播病原菌." 勞工安全衛生技術叢書.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔