(3.231.166.56) 您好!臺灣時間:2021/03/08 12:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐禮強
研究生(外文):Li-Chiang Hsu
論文名稱:黏性補給與外生性交聯對早期退化性椎間盤的動態生物力學性質影響
論文名稱(外文):Changes of Biodynamic Properties of Mild Degenerated Intervertebral Disc due to Viscosupplementation and Crosslinking
指導教授:王兆麟
指導教授(外文):Jaw-Lin Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:39
中文關鍵詞:黏性補給外生性交聯抗靜水壓阻動態生物力學性質
外文關鍵詞:Viscosupplementationhyaluronic acidexogenous crosslinkinggenipinfatigue loadingdynamic properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Objective: To evaluate the biodynamic properties of the mildly degenerated intervertebral disc after viscosupplementation and crosslinking.
Summary of Background Data: The matrix denaturation in early degenerated intervertebral disc compromise the hydraulic retention mechanism to resist compressive loading and thus degrade disc dynamic properties. Hyaluronic acid (HA) is one of primary compositions of extracellular matrix and characterized to absorb abundant water to increase the viscosity of synovial fluid. Whether the interaction of HA and the degenerated disc matrix could resume the disc dynamic properties by similar mechanism remains unclear. The dynamic properties of the degenerated discs were partially recovered by genipin-induced crosslinking. The recovery degree may be enhanced by increasing the genipin concentration and reaction time. The recovery efficiency of HA-mediated viscosupplementation and genipin-induced crosslinking on the dynamic properties of the mildly degenerated disc has not been compared yet.
Methods: A total of 36 porcine lumbar body-disc-body constructs were assigned to an “Intact disc” group (n=9) and a “Degenerated disc” group (n=27). The specimens of the “Intact disc“ were injected with 1 ml saline, while the specimens of the “Denatured disc” were injected with 1 ml 0.5% trypsin solution. After a 24 hr saline bath, an impact test was performed before and after a 30 min fatigue loading (peak to peak: 190-490 N) to obtain the dynamic properties, i.e. stiffness modulus (K, N/s) and damping coefficient (C, Ns/mm). The specimens of the “Intact disc” and 9 specimens of the “Denatured disc” were injected with 1 ml HA (“Viscosupplemented disc”), while the other 9 discs of the “Denatured disc” were injected with 1 ml 3.3% genipin solution (“Crosslinked disc”). Then the “Intact disc” and the “Viscosupplemented disc” rehydrated in saline solution for 24 hr, while the “Crosslinked disc” rehydrated for 72 hr. After that, the aforementioned protocols of rehydration, fatigue loading and the impact test were repeated to obtain the disc dynamic properties.
Results: For the intact disc, the stiffness modulus was 720.2 (75.4) N/mm and the damping coefficient was 0.60 (0.06) Ns/mm. After the fatigue loading, the stiffness modulus increased to 937.7 (16.4) N/mm and the damping coefficient decreased to 0.53 (0.03) Ns/mm. HA-mediated Viscosupplementation increased the stiffness modulus and the damping coefficient, but the effect was decreased for the stiffness modulus by the fatigue loading. The disc stiffness modulus and damping coefficient were degraded by the trypsin-induced degeneration, but fully recovered by the HA-mediated viscosupplementation and genipin-induced crosslinking. However, the stiffness modulus and damping coefficient of the viscosupplemented disc were degraded by the fatigue loading, while only the stiffness modulus of the crosslinked disc degraded after the fatigue loading. Compared to the previous data, the recovery level of the genipin solution on the stiffness modulus and damping coefficient of the degenerated disc were elevated when the genipin concentration was 10 folds increased and the crosslinking time was 3 times elongated.
Conclusion: The recovery efficiency of the genipin-induced crosslinking on the dynamic properties of the degenerated disc, especially on the damping coefficient, was more sustainable to the fatigue loading when compared to that of the HA-mediated viscosupplementation, and could be enhanced by increasing the genipin solution concentration and reaction time.


中文摘要 i
Abstract iii
圖目錄 vii
表目錄 viii
第一章 前言 1
1-1 脊椎的基本構造 1
1-2椎間盤的基本構造及功能 2
1-3椎終板的基本構造及功能 3
1-4椎間盤的生物力學性質 4
1-5 椎間盤傷害 5
1-6黏性補給製劑玻尿酸 6
1-7外生性交聯製劑梔子素 8
1-8實驗動機與目的 9
第二章 實驗設備 11
2-1 連續式衝擊試驗機構 11
2-1-1 衝擊錘 13
2-1-2 撞擊承受器 13
2-1-3 往復式衝擊模組 13
2-1-4 線性電位計 14
2-1-6 線性位移計 15
2-1-7 訊號擷取處理及控制系統 15
2-2 液壓製造裝置 16
2-2-1 液壓致動設備 16
2-2-2 液壓量測系統 17
第三章 材料與方法 18
3-1黏性補給與外生性交聯對輕微退化性椎間盤的動態性質影響 18
3-2椎終板抗靜水壓阻測試流程 22
3-3 統計分析方法 24
第四章 實驗結果 26
4-1黏性補給對健康椎間盤動態性質的影響 26
4-2外生性交聯程度對退化性椎間盤動態性質的影響 27
4-3黏性補給/外生性交聯對退化性椎間盤動態性質的影響 28
4-4外生性交聯對退化性椎終板靜水壓阻的影響 30
第五章 討論 31
5-1椎間盤之動態生物力學性質討論 31
5-2椎間核變性降解的椎間盤之動態性質討論 31
5-3椎間核外生性交聯/黏性補給的椎間盤之動態性質討論 32
5-4外生性交聯的程度對於椎間盤之動態性質討論 33
5-5實驗限制 34
第六章 結論與未來展望 35
6-1結論 35
6-2未來展望 35
參考文獻 36



1.Adams M, Roughley P. What is intervertebral disc degeneration, and what causes it? Spine 2006;31:2151.
2.Akmal M, Singh A, Anand A, et al. The effects of hyaluronic acid on articular chondrocytes. J Bone Joint Surg Br 2005;87:1143-9.
3.Alini M, Li W, Markovic P, et al. The potential and limitations of a cell-seeded collagen/hyaluronan scaffold to engineer an intervertebral disc-like matrix. Spine 2003;28:446-53.
4.Antoniou J, Steffen T, Nelson F, et al. The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 1996;98:996-1003.
5.Barbir A, Michalek AJ, Abbott RD, et al. Effects of enzymatic digestion on compressive properties of rat intervertebral discs. J Biomech 2009;43:1067-73.
6.Beattie P. Current understanding of lumbar intervertebral disc degeneration: A review with emphasis upon etiology, pathophysiology, and lumbar magnetic resonance imaging findings. Journal of Orthopaedic & Sports Physical Therapy 2008;38:329-40.
7.Beckstein JC, Sen S, Schaer TP, et al. Comparison of animal discs used in disc research to human lumbar disc. Spine 2008;33:E166-E73.
8.Chuang SY, Lin L, Tsai Y, et al. Exogenous crosslinking recovers the functional integrity of intervertebral disc secondary to a stab injury. Journal of Biomedical Materials Research Part A 2009.
9.Chuang SY, Lin LC, Hedman TP. The influence of exogenous cross-linking and compressive creep loading on intradiscal pressure. Biomech Model Mechanobiol 2010.
10.Chuang SY, Odono RM, Hedman TP. Effects of exogenous crosslinking on in vitro tensile and compressive moduli of lumbar intervertebral discs. Clinical Biomechanics 2007;22:14-20.
11.Cloyd JM, Malhotra NR, Weng L, et al. Material properties in unconfined compression of human nucleus pulposus, injectable hyaluronic acid-based hydrogels and tissue engineering scaffolds. European Spine Journal 2007;16:1892-8.
12.Dechert TA, Ducale AE, Ward SI, et al. Hyaluronan in human acute and chronic dermal wounds. Wound Repair Regen 2006;14:252-8.
13.Ferguson SJ, Ito K, Nolte LP. Fluid flow and convective transport of solutes within the intervertebral disc. Journal of Biomechanics 2004;37:213-21.
14.Goldberg VM, Buckwalter JA. Hyaluronans in the treatment of osteoarthritis of the knee: evidence for disease-modifying activity. Osteoarthritis and Cartilage 2005;13:216-24.
15.Grunhagen T, Wilde G, Soukane DN, et al. Nutrient supply and intervertebral disc metabolism. Journal of Bone and Joint Surgery-American Volume 2006;88A:30-5.
16.Hedman TP, Saito H, Vo C, et al. Exogenous cross-linking increases the stability of spinal motion segments. Spine (Phila Pa 1976) 2006;31:E480-5.
17.Johannessen W, Vresilovic EJ, Wright AC, et al. Intervertebral disc mechanics are restored following cyclic loading and unloaded recovery. Annals of Biomedical Engineering 2004;32:70-6.
18.Laffosse JM, Accadbled F, Odent T, et al. Influence of asymmetric tether on the macroscopic permeability of the vertebral end plate. European Spine Journal 2009;18:1971-7.
19.Leahy JC, Hukins DW. Viscoelastic properties of the nucleus pulposus of the intervertebral disk in compression. J Mater Sci Mater Med 2001;12:689-92.
20.LeHuec JC, Kiaer T, Friesem T, et al. Shock absorption in lumbar disc prosthesis: a preliminary mechanical study. J Spinal Disord Tech 2003;16:346-51.
21.Martin MD, Boxell CM, Malone DG. Pathophysiology of lumbar disc degeneration: a review of the literature. Neurosurg Focus 2002;13:E1.
22.Mwale F, Demers CN, Michalek AJ, et al. Evaluation of quantitative magnetic resonance imaging, biochemical and mechanical properties of trypsin-treated intervertebral discs under physiological compression loading. J Magn Reson Imaging 2008;27:563-73.
23.Necas J, Bartosikova L, Brauner P, et al. Hyaluronic acid (hyaluronan): a review. Veterinarni Medicina 2008;53:397-411.
24.Nesti LJ, Li WJ, Shanti RM, et al. Intervertebral disc tissue engineering using a novel hyaluronic acid-nanofibrous scaffold (HANFS) amalgam. Tissue Engineering Part A 2008;14:1527-37.
25.Pfeiffer M, Boudriot U, Pfeiffer D, et al. Intradiscal application of hyaluronic acid in the non-human primate lumbar spine: radiological results. Eur Spine J 2003;12:76-83.
26.Pfirrmann CW, Metzdorf A, Zanetti M, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine (Phila Pa 1976) 2001;26:1873-8.
27.Phiphobmongkol V, Sudhasaneya V. The effectiveness and safety of intra-articular injection of sodium hyaluronate (500-730 kDa) in the treatment of patients with painful knee osteoarthritis. J Med Assoc Thai 2009;92:1287-94.
28.Prestwich GD, Marecak DM, Marecek JF, et al. Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. Journal of Controlled Release 1998;53:93-103.
29.Raj PP. Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Pract 2008;8:18-44.
30.Rajasekaran S, Babu JN, Arun R, et al. ISSLS prize winner: A study of diffusion in human lumbar discs: a serial magnetic resonance imaging study documenting the influence of the endplate on diffusion in normal and degenerate discs. Spine (Phila Pa 1976) 2004;29:2654-67.
31.Revell PA, Damien E, Di Silvio L, et al. Tissue engineered intervertebral disc repair in the pig using injectable polymers. Journal of Materials Science-Materials in Medicine 2007;18:303-8.
32.Riches PE, McNally DS. A one-dimensional theoretical prediction of the effect of reduced end-plate permeability on the mechanics of the intervertebral disc. Proc Inst Mech Eng H 2005;219:329-35.
33.Schimizzi AL, Massie JB, Murphy M, et al. High-molecular-weight hyaluronan inhibits macrophage proliferation and cytokine release in the early wound of a preclinical postlaminectomy rat model. Spine J 2006;6:550-6.
34.Shimizu C, Yoshioka M, Coutts RD, et al. Long-term effects of hyaluronan on experimental osteoarthritis in the rabbit knee. Osteoarthritis Cartilage 1998;6:1-9.
35.Silverstein E, Leger R, Shea KP. The use of intra-articular hylan G-F 20 in the treatment of symptomatic osteoarthritis of the shoulder - A preliminary study. American Journal of Sports Medicine 2007;35:979-85.
36.Singh K, Masuda K, Thonar EJ, et al. Age-related changes in the extracellular matrix of nucleus pulposus and anulus fibrosus of human intervertebral disc. Spine 2009;34:10-6.
37.Sung HW, Chang WH, Ma CY, et al. Crosslinking of biological tissues using genipin and/or carbodiimide. Journal of Biomedical Materials Research Part A 2003;64A:427-38.
38.Tsai KH, Lin RM, Chang GL. Rate-related fatigue injury of vertebral disc under axial cyclic loading in a porcine body-disc-body unit. Clin Biomech (Bristol, Avon) 1998;13:S32-S9.
39.Urban J, Roberts S. Degeneration of the intervertebral disc. Arthritis Research and Therapy 2003;5:120-38.
40.Vernengo J, Fussell GW, Smith NG, et al. Synthesis and Characterization of Injectable Bioadhesive Hydrogels for Nucleus Pulposus Replacement and Repair of the Damaged Intervertebral Disc. Journal of Biomedical Materials Research Part B-Applied Biomaterials 2010;93B:309-17.
41.Wang JL, Wu TK, Lin TC, et al. Rest cannot always recover the dynamic properties of fatigue-loaded intervertebral disc. Spine 2008;33:1863-9.
42.White TL, Malone TR. Effects of running on intervertebral disc height. J Orthop Sports Phys Ther 1990;12:139-46.
43.Yang S-M, Jaw-Lin Wng DS. Effect of Nucleus Pulposus Denaturation and Exogenous Crosslinking on the Dynamic Properties of Intervertebral Disc. 2009.
44.Yao H, Justiz MA, Flagler D, et al. Effects of swelling pressure and hydraulic permeability on dynamic compressive behavior of lumbar annulus fibrosus. Ann Biomed Eng 2002;30:1234-41.
45.Yerramalli CS, Chou AI, Miller GJ, et al. The effect of nucleus pulposus crosslinking and glycosaminoglycan degradation on disc mechanical function. Biomechanics and Modeling in Mechanobiology 2007;6:13-20.
46.Yeung RWK, Chow RLK, Samman N, et al. Short-term therapeutic outcome of intra-articular high molecular weight hyaluronic acid injection for nonreducing disc displacement of the temporomandibular joint. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics 2006;102:453-61.
47.Yucel I, Karaca E, Ozturan K, et al. Biomechanical and histological effects of intra-articular hyaluronic acid on anterior cruciate ligament in rats. Clin Biomech (Bristol, Avon) 2009;24:571-6.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔