(3.220.231.235) 您好!臺灣時間:2021/03/09 05:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:鍾政宏
研究生(外文):Cheng-Hong Chung
論文名稱:三維電腦斷層影像冠狀動脈追蹤與重建演算法
論文名稱(外文):Coronary Artery Tracking and Extraction Algorithm in Multi-slice Computed Tomography Image
指導教授:陳中明陳中明引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:55
中文關鍵詞:冠狀動脈疾病冠狀動脈追蹤冠狀動脈粹取區域成長法
外文關鍵詞:coronary artery diseasecoronary artery trackingcoronary artery extractionhessian matrixregion growing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:425
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據衛生署統計,心臟疾病為國人死亡率排名第二名。而心臟疾病在美國根據CDC統計排名為死亡率第一,而冠狀動脈疾病又為心臟疾病之首,因此冠狀動脈疾病的診斷與治療變成為維護國人健康最重要的課題。而利用電腦斷層掃描影像偵測冠狀疾病為目前最方便有效的工具,發展快速簡易的診斷工具實為重要。冠狀動脈疾病在電腦輔助診斷過程中第一步最重要的就是針對冠狀動脈進行追蹤取萃取的動作,當描繪出冠狀動脈後在對血管內部進行分割並辨識斑塊的種類及危險性分析。本研究著重於冠狀動脈的追蹤與萃取,並以全自動化為目標降低使用者操作的過程,提高冠狀動脈分支的辨識率。

本研究中主要目的在於發展較為自動化的工具並提升總體冠狀動脈分支的準確率。其演算法大略分為三個步驟,首先由使用者點選主動脈任一區域,利用區域成長法(region growing)對每一切面進行主動脈的成長,並由主動脈的位置與半徑決定心臟區域大略位置。再來採用管狀結構偵測法(Tube-like object detection approaches)中之Hessian matrix進行分析,分析其特徵值與特徵向量(eigenvalue, eigenvector)擷取出大量疑似管狀結構像素。接下來利用主動脈的輪廓以及主動脈經由平滑化的輪廓作exclusive or運算以偵測冠狀動脈的起始切面與起始點,作為區域成長的種子點。最後改良區域成長法讓其可以適應局部區域的變化,並利用不同成長條件來達到取得最佳化的冠狀動脈血管束。

本研究採用八組電腦斷層掃瞄影像來進行實驗,實驗結果與現行醫師利用商用軟體手動描繪出之冠狀動脈血管束輪廓作比較。結果顯示本研究可以追蹤並萃取出各種不同管徑的冠狀動脈分支,對於末梢細微的血管粹取也有很好的效果。


According to statistics from the Department of Health, heart disease has been the second major cause of death in Taiwan. And heart disease in the United States is ranked first according to CDC mortality statistics. Coronary artery disease is the leading cause of heart disease; the diagnosis and treatment of coronary artery disease to safeguard the health of citizens have become the most important issue. CT imaging is one of the most convenient and effective tools for detecting coronary disease. The simplicity of diagnostic tools is crucial. In the first step of Computer-aided diagnosis of coronary artery disease, the most important step is to track and extract all the coronary arteries branches, find plaques in arteries, identify types of plaque, risk analysis finally. This research focuses on tracking and extraction of coronary arteries, reducing interactions between user and system, and improving the precision of coronary artery branches.
The main contribution of this study is to develop an automated tool and improve the overall precision of coronary artery branches. This algorithm is roughly divided into three steps including clicking any aortic region by the user using region growing for each slice of aortic growth, and setting heart zone by the location and radius of aortic region. By using the Hessian matrix, tube-like object detection approaches and used to extract a large number of suspected tubular structure voxels. Next, making exclusive-or operation to detect coronary artery starting slices and points as the initial seeding points in the next region growing method. At last, adaptive local region growing adapts local variation and use different growth conditions to optimize the coronary arteries
In this study, eight sets of CT scan images are used as testing data. The experimental results are compared with the commercial off-the-shelf software. The result shows that this algorithm detect and extract various branches of coronary arteries, also has very good results in small lumen of coronary arteries.


誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 5
1.3文獻探討 9
1.4研究架構 12
第二章 研究材料及方法 13
2.1研究材料 13
2.2冠狀動脈追蹤演算法流程 13
2.3基本演算法 15
2.4影像前處理 16
2.4.1 VOI之自動選取 17
2.4.2 移除肺部區域 18
2.5 建立管狀結構地圖(Multi-scale vessel filtering) 19
2.5.1 Hessian Matrix & Frangi Filter 20
2.6 冠狀動脈起始點區域 26
2.7 可調式性區域成長法 27
2.7.1去除主動脈與其他肺動/靜脈組織 27
2.7.2區域成長法 29
2.7.3可調式性區域成長法 30
第三章 研究成果與討論 32
第四章 結論與未來展望 48
參考文獻 49


[1]中華民國公共衛生年報,行政院衛生署-2009
[2]C.D.C Leading Causes of Death (Data are for the U.S.)
http://www.cdc.gov/nchs/fastats/lcod.htm
[3]http://www.nlm.nih.gov/medlineplus/ency/imagepages/18050.htm
[4]Braunwald E, et al. Heart Disease:A Textbook of Cardiovascular Medicine. Elsevier Saunders 2005; 7th ed:1281-1354
[5]Nikolaou K, Flohr T, Knez A, et al. Advances in cardiac CT imaging: 64-slice scanner. Int J Cardiovasc Imaging 2004; 20:535-540.
[6]Miller JM, Rochitte CE, Dewey M, et al. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 2008; 359:2324-2336
[7]Schmermund A, Nowak B, Voigtlander T. Non-invasive CT coronary angiography: can high diagnostic image quality be achieved with less radiation exposure? Eur Heart J 2008; 29:2955-2956.
[8]Mollet NR, Cademartiri F, de Feyter PJ. Non-invasive Multislice CT Coronary Imaging. Heart 2005;91:401-407.
[9]Mollet NR, Cadematiri F, Nieman K, Saia F, Lemos PA, McFadden EP, Serruys PW, Krestin GP, de Feyter PJ. Noninvasive Assessment of Coronary Plaque Burden Using Multislice Computed Tomography. Am J Cardiol 2005;95:1165-1169.
[10]Van Werkhoven JM, Schuijf JD, Jukema JW, Van Der Wall EE, Bax JJ. Multi-slice Computed Tomography Coronary Angiography. Anatomic vs. Functional Assessment in Clinical Practice. Minerva Cardioangiol 2008;56(2):215-26.
[11]Cook SC, Raman SV. Unique Application of Multislice Computed Tomography in Adults with Congenital Heart Disease. Int J Cardiol 2007;119:101-106.
[12]Bruining N, Roelandt J, Palumbo A, La Grutta L, Cademartiri F, de Feijter PJ, Mollet N, Van Domburg RT, Serruys PW, Hamers R. Reproducible Coronary Plaque Quantification by Multislice Computed Tomography. Catheter Cardiovasc Interv 2007;69:857-865.
[13]Nair D, Carrigan T, Curtin R, Popovic Z, Kuzmiak S, Schoenhagen P, Flamn S, Desai MY. Association of Coronary Atherosclerosis Detected by Multislice Computed Tomography and Traditional Risk-factor Assessment. Am J Cardiol 2008;102:316–320
[14]Coles DR, Smail MA, Negus IS, Wilde P, Oberhoff M, Karsch KR, Baumbach A. Comparison of Radiation Doses From Multislice Computed Tomography Coronary Angiography and Conventional Diagnostic Angiography. J Am Coll Cardiol 2006;47:1840-1845.
[15]Leber AW, Knez A, White CW, Becker A, von Ziegler F, Muehling O, Becker C, Reiser M, Steinbeck G, Boekstegers P. Composition of Coronary Atherosclerotic Plaques in Patients with Acute Myocardial Infraction and Stable Angina Pectoris Determined by Contrast-enhanced Multislice Computed Tomography. Am J Cardiol 2003;91:714-718.
[16]Schroeder S, Kopp AF, Baumbach A, Meisner C, Kuettner A, Georg C, Ohnesorge B, Herdeg C, Claussen CD, Karsch KR. Noninvasive Detection and Evaluation of Atherosclerotic Coronary Plaques with Multislice Computed Tomography. J Am Coll Cardiol 2001;37:1430-1435.
[17]Fotin SV, Reeves AP, Cham MD, et al. Segmentation of coronary arteries from CT angiography images. Proc SPIE 2007; 6514.
[18]Springer I, Dewey M. Comparison of multislice computed tomography with intravascular ultrasound for detection and characterization of coronary artery plaques: a systematic review, Eur J Radiol 71 2009, pp. 275–282
[19]Henk A. Marquering, Jouke Dijkstra et al. Coronary CT angiography: IVUS image fusion for quantitative plaque and stenosis analyses. Proc. SPIE, Vol. 6918, 69181G (2008)
[20]Sianos G, Morel MA, Kappetein AP, Morice MC, et al. The SYNTAX score: an angiographic tool grading the complexity of coronary artery disease. EuroIntervention 2005;1:219-227
[21]Sonka M, Zhang X, Siebes M, et al. Segmentation of intravascular ultrasound images: a knowledge-based approach. IEEE Trans Med Imaging 1995; 14: 719–732.
[22]Bousse A, Boldak C, Toumoulin C, et al. Coronary extraction and characterization in multi-detector computed tomography. ITBM-RBM 2006; 27: 217-226.
[23]C. Kirbas and F. Quek "A review of vessel extraction techniques and algorithms", ACM Computing Surveys, vol. 36, pp. 81 2004.
[24]Hennemuth A, Boskamp T, Fritz D, et al. One-click coronary tree segmentation in CT angiographic images. Int''l Congress Series 2005; 1281:317-321.
[25]Mueller, D., Maeder, A., O’Shea, P.: Improved direct volume visualization of the coronary arteries using fused segmented regions. In: DICTA05, 2005 pp. 110–118.
[26]Luengo-Oroz MA, Ledesma-Carbayo MJ, Gomez-Diego JJ, et al. Extraction of the coronary artery tree in cardiac computer tomographic images using morphological operators. LNCS 2007; 4466: 424-432.
[27]Zhou C, Chan HP, Chughtai A, et al. Automated segmentation and tracking of coronary arteries in ECG-gated cardiac CT scans. Proc SPIE 2008; 6915.
[28]B. Bouraoui, C. Ronsea, J. Baruthio, N. Passat, P. Germain. 3D segmentation of coronary arteries based on advanced mathematical morphology techniques. Computerized Medical Imaging and Graphics Volume 34, Issue 5, July 2010, Pages 377-387
[29]Wesarg S, Khan MF, Firle EA. Localizing calcifications in cardiac CT data sets using a new vessel segmentation approach. J Digital Imaging 2006; 19(3): 249-257.
[30]Wang C, Smedby O. Coronary artery segmentation and skeletonization based on competing fuzzy connectedness tree. LNCS 2007; 4791: 311-318.
[31]Mueller D, Maeder A. Robust semi-automated path extraction for visulaising stenosis of the coronary arteries. Computerized Medical Imaging and Graphics 2008; 32: 463-475.
[32]Manniesing R, Viergever MA, Niessen WJ. Vessel axis tracking using topology constrained surface evolution. IEEE Trans Med Imaging 2007; 26(3): 309-316.
[33]Li H, Yezzi A. Vessels as 4-D curves: Global minimal 4-D paths to extract 3-D tubular surface and centerlines. IEEE Trans Med Imaging 2007; 26(9): 1213-1223.
[34]Avants BB, Williams JA. An Adaptive Minimal Path Generation Technique for Vessel Tracking in CTA/CE-MRA Volume. MICCAI 2000;1935:707-716.
[35]Laguitton S, Boldak C, Toumoulin C. Temporal Tracking of Coronaries in Multi-slice Computed Tomography. Conf Proc IEEE Eng Med Biol Soc 2007;1:4512-4515.
[36]Sen A, Lan L, Doi K, Hoffman KR. Quantitative Evaluation of Vessel Tracking Techniques on Coronary Angiograms. Med Phys 1999;26(5):698-706.
[37]Wink O, Niessen WJ, Viergever MA. Multiscale Vessel Tracking. IEEE Trans Med Imag 2004;23(1):130-133.
[38]Wink O, Frangi AF, Verdonck B, Viergever MA, Niessen WJ. 3D MRA Coronary Axis Determination Using a Minimum Cost Path Approach. Magn Reson Med 2002;47(6):1169-1175.
[39]Xu Y, Zhang H, Li H, Hu G. An Improved Algorithm for Vessel Centerline Tracking in Coronary Angiograms. Comput Method Program Biomed 2007;88(2):131-143.
[40]Chen Z, Molloi S. Multiresolution Vessel Tracking in Angiographic Images Using Valley Courses. Opt Eng 2003;46:1673-1682.
[41]Boldak C, Rolland Y, Toumoulin C. An Improved Model-based Vessel Tracking Algorithm with Application to Computed Tomography Angiography. J Biocybernetics Biomed Eng 2003;3(1):41-63.
[42]Hoyos MH, Orkisz M, Douek PC, Magnin IE. Assessment of Carotid Artery Stenoses in 3D Contrast-enhanced Magnetic Resonance Angiography, Based on Improved Generation of the Centerline. Mach Graph Vis Int J 2005;14(4):349-378.
[43]Zhou C, Hadjiiski LM, Sahiner B, Chan HP, Patel S, Cascade P, Kazerooni EA, Wei J. Computerized Detection of Pulmonary Embolism in 3D Computed Tomography (CT) images: Vessel Tracking and Segmentation Techniques. Proc SPIE 2003;5032:1613-1620.
[44]Foo T, Ho VB, Hood MN. Vessel Tracking: Prospective Adjustment of Section-selective MR Angiographic Locations from Improved Coronary Artery Visualization over the Cardiac Cycle. Radiology 2000;214:283-289.
[45]Khan MF, Wesarg S, Gurung J, Dogan S, Maataour A, Brehmer B, Herzog C, Ackermann H, Aβmus B, Vogl TJ. Facilitating Coronary Artery Evaluation in MDCT Using a 3D Automatic Vessel Segmentation Tool. European Radiol 2006;16(8):1789-1795.
[46]Metz C.T., Schaap M., Weustink A.C., et al. Coronary centerline extraction from CT coronary angiography images using a minimum cost path approach. Medical Physics, 2009, vol. 36, pp. 5568-5579 .
[47]Olabarriaga S. D, Breeuwer M, Niessen W.J., "Minimum Cost Path Algorithm for Coronary Artery Central Axis Tracking in CT images", in: Medical Image Computing and Computer-Assisted Intervention, Editor(s): R.E. Ellis, T.M. Peters, Springer, 2003, vol. 2879, Lecture Notes in Computer Science, p. 687-694
[48]MacQueen J. 1967. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, LeCam LM, Neyman J (eds). University of California Press: Berkeley, CA; 281–297.
[49]Bennink H. E., et al. A novel 3d multi-scale lineness filter for vessel detection. In N. Ayache, S. Ourselin, and A. J. Maeder, editors, MICCAI (2), volume 4792 of Lecture Notes in Computer Science, pages 436–443. Springer, 2007.
[50]G. Yang, et al. "Multiscale vessel enhancement filtering," in MICCAI98 Medical Image Computing & Computer-Assisted Intervention (Lecture Notes in Computer Science), A. Colchester W. M. Wells and S. Delp, Eds. New York: Springer-Verlag: 1998, vol. 1496 pp. 130–137.
[51]G. Yang, et al. A multiscale tracking algorithm for the coronary extraction in MSCT angiography," In Proceedings of Engineering in Medicine and Biology Society, 2006. EMBS ''06. 28th Annual International Conference of the IEEE, pp. 3066-3069, 2006.
[52]Yang Y, Image Segmentation and Shape Analysis of Blood Vessels with Applications to Coronary Atherosclerosis, Ph.D. thesis, Georgia Institute of Technology, Atlanta, Georgia, USA, March 2007.
[53]Y. Sato, et al. 3D multi-scale line filler for segmentation and visualization of curvilinear structures in medical images. In J. Troccaz, E. Grimson, and R. Mosges, eds., Proc. CVRMed-MRCAS’97, LNCS, pages 213–222, 1997
[54]Dey D, Callister T, Slomka P, et al. Computer-aided detection and evaluation of lipid-rich plaque on noncontrast cardiac CT. AJR 2006; 186: S407-S413.
[55]Cardiophile MD
http://cardiophile.org/


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔