|
1.Ste′phane Mornet, S.b.V., Fabien Grasset and Etienne Duguet*, Magnetic nanoparticle design for medical diagnosis and therapy. Journal of MaterialsChemistry, 2004. 1 4: p. 2 1 6 1 – 2 1 7 5. 2.Jack A.Roth, J.D.C., Waun Ki Hong Lung cancer, third ed. Blackwell publishing, 2008. 3.Yuan, E., Cause of Death Statistics, Taiwan. Department of Health,, 2007. 4.László Tabár MDa, B.V.M., Hsiu-Hsi Chen PhDd, Stephen W. Duffy MSce, Ming-Fang Yen MScd, Ching-Feng Chiang BScd, Ulla Brith Krusemo BScf, Tibor Tot MDb and Robert A. Smith PhDg, THE SWEDISH TWO-COUNTY TRIAL TWENTY YEARS LATER: Updated Mortality Results and New Insights from Long-Term Follow-up Radiologic Clinics of North America, 1 July 2000. 38(4): p. 625-651 5.J. Ewing, W.B.S., Philadelphia, , Neoplastic Diseases: A Treaties on Tumors 4th ed. 1940. 6.李門輝, 癌的歷史記載和定義 癌的基礎科學. 合記圖書出版社, 1987: p. 15-19. 7.C. J. Marshall, E.A.N., Oncogenes and cell proliferation: Cancer genes: lessons from genetics and biochemistry Curr Opin Genent Dev, 1998. 8(1): p. 11-3. 8.Webb, D.D., GERD warrants increased physician appreciation and improved treatment Postgrad Med, 2001: p. spec no:5-10. 9.Connell, J.E. and D.C. D, Risk of ciguatera fish poisoning: impact on recommendations to eat more fish. Asia Pac J Clin Nutr, 2003. 12 Suppl: p. S67. 10. University of Washington, U.M.P., Respiratory: Lung Cancers. 2007. 11. Henschke CI, Y.D., Libby DM, Pasmantier MW, Smith JP, Miettinen OS, Surivival of patients with stage I lung cancer detected on CT screenung. N Engl J Med 2006, 2006. 355: p. 1763-1771. 12.Flieder DB, V.M., Carter D, Pathologic findings of lung tumors diagnosed on baseline CT screening. Am J surg Pathol, 2006. 30: p. 606-613. 13.James, J.S., Lung cancer: very high death rate with HIV, huge reduction possible with CT screening for early diagnosis. AIDS Treat News, 2006(420): p. 5-6. 14.Pathology, D.o.L.M., PC tumor image. 2005. 15.Ihde, D., et al., Small cell lung cancer. Lung Cancer, 1997. 17 Suppl 1: p. S19-21. 16.Thomas J. Lynch, M.D., Daphne W. Bell, Ph.D., Raffaella Sordella, Ph.D., Sarada Gurubhagavatula, M.D., Ross A. Okimoto, B.S., Brian W. Brannigan, B.A., Patricia L. Harris, M.S., Sara M. Haserlat, B.A., Jeffrey G. Supko, Ph.D., Frank G. Haluska, David N. Louis, David C. Christiani, Jeff Settleman, and Daniel A. Haber, Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib. The new england journal of medicine, 2004. 350(21). 17.Ito, A., et al., Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng, 2005. 100(1): p. 1-11. 18.K. M. Sekins, J. K. Hoffman, M. R. Wolfson and T. H. Shaffer Feasibility of lung cancer hyperthermia using breathable perfluorochemical (PFC) liquids. Part I: Convective hyperthermia. INT. J. Hyperthermia, 2004. 20(3): p. 252–527. 19.Zwischenberger, J.B., et al., Percutaneous venovenous perfusion-induced systemic hyperthermia for advanced non-small cell lung cancer: initial clinical experience. Ann Thorac Surg, 2001. 72(1): p. 234-42. 20.Robins, H.I., et al., A pilot study of whole body hyperthermia and local irradiation for advanced non-small cell lung cancer confined to the thorax. Int J Radiat Oncol Biol Phys, 1988. 15(2): p. 427-31. 21.Aakash and P. Sabitha, Aspirin for diabetes: are we adhering to ADA guidelines? Natl Med J India, 2009. 22(1): p. 49. 22.Sakurai, H., et al., Effect of hyperthermia combined with external radiation therapy in primary non-small cell lung cancer with direct bony invasion. Int J Hyperthermia, 2002. 18(5): p. 472-83. 23.Zwischenberger, J.B., et al., Percutaneous venovenous perfusion-induced systemic hyperthermia for lung cancer: a phase I safety study. Ann Thorac Surg, 2004. 77(6): p. 1916-24; discussion 1925. 24.H. Sakurai, Y. Tamaki, T. Akimoto, O. Murta, and K.M. Y. Kitamoto, H. Ishikawa, K. Hayakawa and H. Niibe, Interaction between low dose-rate irradiation, mild hyperthermia and low-dose ca Ú eine in a human lung cancer cell line. int. j. radiat. biol, 1999. 75(6): p. 739- 745. 25.Andreas Jordan*, R.S., Peter Wust, Horst FaKhling, Roland Felix, Magnetic #uid hyperthermia (MFH): Cancer treatment with AC magnetic "eld induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 1998. 201: p. (413-419. 26.Hall, E.J.a.A.J.G., Hyperthermia, in Radiobiology for the radiologist. Lippincott Williams & Wilkins: Philadelphia, 2000: p. 504. 27.Joseph B. Zwischenberger, M., Roger A. Vertrees, PhD, Eric A. Bedell, MD,Christopher K. McQuitty, MD, Jill M. Chernin, RN, and Lee C. Woodson, MD, PhD, Percutaneous Venovenous Perfusion-Induced Systemic Hyperthermia for Lung Cancer: A Phase I Safety Study. Ann Thorac Surg, 2004. 77: p. 1916-1925. 28.Joseph B. Zwischenberger, M., Roger A. Vertrees, PhD, CCP,Lee C. Woodson, MD, PhD, Eric A. Bedell, MD, Scott K. Alpard, BA,Christopher K. McQuitty, MD, and Jill M. Chernin, RN, Percutaneous Venovenous Perfusion-Induced Systemic Hyperthermia for Advanced Non±Small Cell Lung Cancer: Initial Clinical Experience. Ann Thorac Surg. 72: p. 234-242. 29.Sekins, K.M., et al., Feasibility of lung cancer hyperthermia using breathable perfluorochemical (PFC) liquids. Part I: Convective hyperthermia. Int J Hyperthermia, 2004. 20(3): p. 252-77. 30.H. Ian Robins, Anders Hugander, Richard Steeves, Warren H. Dennis, Radiotherapy and Hyperthermia for Lung Cancer Radiation Oncology Biol. Phys, 1986. 12: p. 147. 31.Sekins, K.M., et al., Feasibility of lung cancer hyperthermia using breathable perfluorochemical (PFC) liquids. Part II: Ultrasound hyperthermia. Int J Hyperthermia, 2004. 20(3): p. 278-99. 32.H.Ian Robins, M.D., Ph.D. 1, Walter L. Longo, M.D.1, Richard A. Steeves, M.D., Ph.D.1, Rhonda K. Lagoni1, Anders Hugander, M.D.2, Alan J. Neville, M.Ch.B.3, Stan O''Keefe1, William Giese, M.D.1, C.L. Schmitt1, A pilot study of whole body hyperthermia and local irradiation for advanced non-small cell lung cancer confined to the thorax Rodiurron Onmlo~y Bid. Ph.v., 1988. 15(421-443). 33.Sakurai, H., et al., Interaction between low dose-rate irradiation, mild hyperthermia and low-dose caffeine in a human lung cancer cell line. Int J Radiat Biol, 1999. 75(6): p. 739-45. 34.CH04B055, A.G., et al., Magneto Hyperthermia and Cancer Therapy Magneto Hyperthermia and Cancer Therapy, 2006. 35.Curtis, C.C.B.a.A.S.G., Functionalisation of magnetic nanoparticles for applications in biomedicine. JOURNAL OF PHYSICS D: APPLIED PHYSICS, 2003. 36: p. 198–206. 36.Osaka, T., et al., Synthesis of magnetic nanoparticles and their application to bioassays. Anal Bioanal Chem, 2006. 384(3): p. 593-600. 37.Hou, C.H., et al., The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. Biomaterials, 2009. 30(23-24): p. 3956-60. 38.Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005. 26(18): p. 3995-4021. 39.Lattuada, M. and T.A. Hatton, Functionalization of monodisperse magnetic nanoparticles. Langmuir, 2007. 23(4): p. 2158-68. 40.Curtis, C.C.B.a.A.S.G., Functionalisation of magnetic nanoparticles for applications in biomedicine. JOURNAL OF PHYSICS D: APPLIED PHYSICS, 2003. 36: p. 198-206. 41.Zhang, J. and R.D. Misra, Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. Acta Biomater, 2007. 3(6): p. 838-50. 42.Salata, O., Applications of nanoparticles in biology and medicine. J Nanobiotechnology, 2004. 2(1): p. 3. 43.Moroz, P., S.K. Jones, and B.N. Gray, Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia, 2002. 18(4): p. 267-84. 44.Moroz, P., S.K. Jones, and B.N. Gray, Arterial embolization hyperthermia in porcine renal tissue. J Surg Res, 2002. 105(2): p. 209-14. 45.Moroz, P., et al., Arterial embolization hyperthermia: hepatic iron particle distribution and its potential determination by magnetic resonance imaging. Phys Med Biol, 2002. 47(9): p. 1591-602. 46.Erichsen, C., et al., Blockage of the hepatic-artery blood flow by biodegradable microspheres (Spherex) combined with local hyperthermia in the treatment of experimental liver tumors in rats. J Cancer Res Clin Oncol, 1985. 109(1): p. 38-41. 47.Bakke, A., et al., Augmentation of natural killer cell activity after arterial embolization of renal carcinomas. Cancer Res, 1982. 42(9): p. 3880-3. 48.Carlsson, G., et al., Effects of hepatic artery ligation and intraarterial embolization on liver tumor growth--an experimental study in rats. J Surg Oncol, 1981. 17(3): p. 249-61. 49.Moroz, P., C. Metcalf, and B.N. Gray, Histologic analysis of liver tissue following hepatic arterial infusion of ferromagnetic particles in a rabbit tumour model. Biometals, 2003. 16(3): p. 455-64. 50.Moroz, P., S.K. Jones, and B.N. Gray, Tumor response to arterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model. J Surg Oncol, 2002. 80(3): p. 149-56. 51.Lingyun Zhao 1 , W.J., Yongjian Jin 3 , Xiaowen Wang 1 , Xufei Wang 1 and Jintian Tang 1 Application of Carbonyl Iron Powder as a Novel Mediator for Arterial Embolization Hyperthermia—Feasibility Investigation IFMBE Proceedings 2009. 25: p. 172-175. 52.陳繼仁, 磁性陶瓷. 53.Q A Pankhurst 1 , J.C., S K Jones 3 and J Dobson, Applications of magnetic nanoparticles in biomedicine. JOURNAL OF PHYSICS D: APPLIED PHYSICS, 2002. 36: p. 167-181. 54.T. Nagamiya, K.Y., and R. Kubo, Antiferromagnetism. Advances in Physics, 1995. 4: p. 1-112. 55.n, T.M.A.a.n.d.A.C.h.o.n., Large unilamellar liposomes with low uptake into the reticuloendothelial system Biomedical Division, 1987. 223 (1): p. 42-46. 56.R. H. Müller, M.L., S. Harnisch, et al., Scientific and Clinical Applications of Magnetic Carriers. Häfeli, et al. (Eds.), Plenum Press, New York, 1997, 1997. 135. 57.Kreuter, J., Evaluation of nanoparticles as drug-delivery systems. II: Comparison of the body distribution of nanoparticles with the body distribution of microspheres (diameter greater than 1 micron), liposomes, and emulsions. Pharm Acta Helv, 1983. 58(8): p. 217-26. 58.Duguet, E., et al., Magnetic nanoparticles and their applications in medicine. Nanomedicine (Lond), 2006. 1(2): p. 157-68. 59.Monfardini, C. and F.M. Veronese, Stabilization of substances in circulation. Bioconjug Chem, 1998. 9(4): p. 418-50. 60.Monfardini, C., et al., Construction and binding kinetics of a soluble granulocyte-macrophage colony-stimulating factor receptor alpha-chain-Fc fusion protein. J Biol Chem, 1998. 273(13): p. 7657-67. 61.Zhang, Y. and J. Zhang, Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. J Colloid Interface Sci, 2005. 283(2): p. 352-7. 62.Gupta, A.K. and S. Wells, Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobioscience, 2004. 3(1): p. 66-73. 63.Gupta, A.K. and A.S. Curtis, Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med, 2004. 15(4): p. 493-6. 64.Baraton, M.I., synthesis functionalization and surface treatment of nanoparticles, stevenson Ranch: america scientific publishers. 2003: p. 233-256. 65.Barbara Stella, Silvia Apricco, Maria Terasa Peracchia, Didier Desmaeele, Johan Hoebeke, Michel Renoir, Jean D''angelo, Luigi Cattle, Patrick Couvreur Design of Folic Acid-Conjugated Nanoparticles for Drug Targeting. Journal of Pharmaceutical Siences, 2000. 89(11): p. 1452-1464. 66.Geroge A and Vinod P. SHAHS, Cross-Linking of Gelatin Capsules and Its Relevance to Their in Vitro-in Vivo Performance Journal of pharmaceutical Sciences, 1993. 83(7): p. 915-921. 67.C. Delgado, G.E.F., D. Fisher, The uses and properties of PEG-linked proteins, Crit. Rev. Ther. Drug Carrier Syst, 1992. 9: p. 91-114. 68.K. Kartre, The conjugation of proteins with poly(ethylene glycol) and other polymers. Adv. Drug Deliv, 1993. 10: p. 91-114. 69.Hideo Uchida, Kohki Yoshikawa, Nobuyuki Fujita, Kuni Ohtomo, Yuji Yuasa, Yasuyuki Kawamura and Osamu Matsui, Large scale clinical evaluation of bowel contrast agent containing Ferric Ammonium Citrate in MRI Magnetic Resonance Imaging, 1994. 12(6): p. 837-846. 70.Kivelitz, D., et al., Ferric ammonium citrate as a positive bowel contrast agent for MR imaging of the upper abdomen. Safety and diagnostic efficacy. Acta Radiol, 1999. 40(4): p. 429-35. 71.Randall M.Patten,M.S.K.L., MDJeffrey J. Phillips, Steven C. Bowman, MD, M.S.D.W. Gary M. Glazer, James G. Bova, DO Robert D. Harris, MD Richard , L. Wheat, C. Daniel Johnson, Herbert Y. Kressel, MD, and R.A.H. Arthur E. Stillman, Jr. Albert A. Moss, Positive Bowel Contrast Agent for MR Imaging of the Abdomen: Phase II and III Clinical Trials’. 1999. 72.Broglia, L., et al., [Optimization of dosage and exam technique in the use of oral contrast media in magnetic resonance]. Radiol Med, 1999. 97(5): p. 365-70. 73.Ritchis-Carola, Biology. Addusib-Weskey, 1983: p. 85-97. 74.Eastoe, J.E., The amino acid composition of mammalian collagen and gelatin. Biochem J, 1955. 61(4): p. 589-600. 75.Ward, A.G., Chem. & Ind. 1954: p. 502. 76.SCHWICK, H.G., and HEIDE, K., Immunochemistry and immunology of collagen and gelatin [Review]. Bibliotheca Haematologica,, 1969. 3: p. 111-125. 77.Chvapil M. Collagen sponge, theory and practice of medical applications. J Biomed Mater Res, 1977. 11: p. 721-41. 78.Sela M, A.R., Studies on the chemical basis of the antigenicityof proteins. 1. Antigenicity of polypeptidyl gelatins.. Biochem J, 1960. 75: p. 91-102. 79.Anderson JM, M.K., Biomaterial biocompatibility and the macrophage. . Biomaterials 1984. 5: p. 5-10. 80.Tabata Y, I.Y., Macrophage activation through phagocytosis of muramyl dipeptide encapsulated in gelatin microsphere.. Pharm Pharmacol 1987. 39: p. 698-704. 81.H AÈ SSIG, A., and STAMPFLI, K.,, Plasma substitutes past and present. Bibliotheca Haematologica, 1969. 33: p. 1± 8. 82.Tomihata K, B.K., Shiraki K, Ikada Y., Cross-linking and biodegradation of native and denatured collagen. In: Shalaby SW, Ikada Y, Langer RS, Williams J, editors. Polymers of biological and biomedical importance. . American Chemical Society Symp Series, 1994. 540. 83.M, C., Consideration on manufacturing principles of a synthetic burn dressing, a review Biomat Mater Res 1982. 16: p. 145-163. 84.Ching-Li Tseng , F.-H.L., PREPARATION OF GELATIN NANOPARTICLES WITH EGFR SELECTION ABILITY VIA BIOTINYLATED-EGF CONJUGATION FOR LUNG CANCER TARGETING. Biomedical Engineering, 2008. 20(3): p. 161-169. 85.* Paolo Caliceti , F.M.V., pharmacokinetic and biodistribution properties of poly(ethylene glycol)–protein conjugates. Advanced Drug Delivery Reviews, 2003. 55: p. 1261–1277. 86.Min-Hua.Cheng, Folic Acid immobilized ferrimagnetic DP-Bioglass to target tumor cell for cancer hyperthermia. Nation Tiapei University of Technology master thesis, 2006: p. 13. 87.Mary L. Nucci, R.S.a.A.A., The therapeutic value of poly(ethylene glycol)- modified proteins Advanced Drug Delivery Reviews, 1991. 6: p. 133-151. 88.Yingjuan Lu , P.S.L., mmunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects. Journal of Controlled Release 2002. 91: p. 17-29. 89.Aron M. Troen, B.M., Bess Sorensen, Mark H. Wener, Abbey Johnston,* Brent Wood, Jacob Selhub,* Anne McTiernan,Yutaka Yasui,Evrim Oral,John D. Potter, and Cornelia M. Ulrichy, Unmetabolized Folic Acid in Plasma Is Associated with Reduced Natural Killer Cell Cytotoxicity among Postmenopausal Women. American Society for Nutrition, 2006: p. 189-194. 90.Gabizon, A., et al., Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev, 2004. 56(8): p. 1177-92. 91.Gabizon, A., et al., Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug Chem, 1999. 10(2): p. 289-98. 92.Stella, B., et al., Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci, 2000. 89(11): p. 1452-64. 93.Pellois, J.P., W. Wang, and X. Gao, Peptide synthesis based on t-Boc chemistry and solution photogenerated acids. J Comb Chem, 2000. 2(4): p. 355-60. 94.Wakselman, “Di-t-butyl Dicarbonate” in Encyclopedia of Reagents for Organic Synthesis. J. Wiley & Sons, 2004. 95.Saul Jaime-Figueroa, A.Z., Angel Guzma′n,and David J. Morgans,Jr., N-3-Alkylation of uracil and derivatives via N-1-BOC protection. Synthetic Communication, 2001. 31(24): p. 3739-3746. 96.Ayelet Nudelman'', Y.B., Eliezer Falb'', Bilha Fischerl, Barry A. WexlerZ and Abraham Nudelman'' Acetyl Chloride-Methanol as a Convenient Reagent for: A) Quantitative Formation of Amine Hydrochlorides B) Carboxylate Ester Formation C) Mild Removal of N-t-Boc-Protective Group. 1998. 28(3): p. 471-474 97.Yong Zhang , J.Z., Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. Journal of Colloid and Interface Science 2005. 283: p. 352-357. 98.S.R.Stock, B.D.C.a., Element of X-ray differaction forth edition. Prentice Hall: p. 1-13. 99.medicine, s., Protein Crystallography Course. Basic diffraction: waves, interference and reciprocal space. 3. 100.M. P. Janawadkar, R.B., Rita Saha, K. Gireesan, R. Nagendran, L. S. Vaidhyanathan, and J.J.a.T.S. Radhakrishnan*, SQUIDs – Highly sensitive magnetic sensors. 1999. 101.A. VETTOLIERE ∗ , C.G., B. RUGGIERO and M. RUSSO, SUPERCONDUCTING QUANTUM INTERFERENCE MAGNETOMETER FOR LARGE MULTICHANNEL SYSTEMS WITH LOW CROSSTALK LEVEL. International Journal of Modern Physics B, 2009. 23(31): p. 5759–5767. 102.R Cabassi, F.B.a.F.C., Differential method for sample holder background subtraction in superconducting quantum interference device (SQUID) magnetometry. MEASUREMENT SCIENCE AND TECHNOLOGY, 25 January 2010. 21. 103.2001, Electron Diffraction Using Transmission Electron Microscopy. Journal of Research of the National Institute of Standards and Technology. 106(6). 104.Reimer, L., Transmission Electron Microscopy Physics of Image Formation and Microanalysis Fourth Edition. Springer. 105.L.G. Wade, J., organic chemistry. 106.Garip, S. and F. Severcan, Determination of simvastatin-induced changes in bone composition and structure by Fourier transform infrared spectroscopy in rat animal model. J Pharm Biomed Anal, 2010. 52(4): p. 580-8. 107.Garcia-Quintana, D., et al., Fourier transform infrared spectroscopy indicates a major conformational rearrangement in the activation of rhodopsin. Biophys J, 1995. 69(3): p. 1077-82. 108.Oldham, R.K., et al., Direct comparison of three isotopic release microtoxicity assays as measures of cell-mediated immunity to Gross virus-induced lymphomas in rats. J Natl Cancer Inst, 1977. 58(4): p. 1061-7. 109.Bruning, J.W., M.J. Kardol, and R. Arentzen, Carboxyfluorescein fluorochromasia assays. I. Non-radioactively labeled cell mediated lympholysis. J Immunol Methods, 1980. 33(1): p. 33-44. 110.Blomberg, K., et al., Europium-labelled target cells in an assay of natural killer cell activity. I. A novel non-radioactive method based on time-resolved fluorescence. J Immunol Methods, 1986. 86(2): p. 225-9. 111.Parish, C.R. and A. Mullbacher, Automated colorimetric assay for T cell cytotoxicity. J Immunol Methods, 1983. 58(1-2): p. 225-37. 112.Russell, S.W., Pace, J.L., Varesio, L., Akporiaye, E., Blasi, E., , A. Celado, Schreiber, R.D., Schultz, R.M., Stevenson, A.P., , and C.C.a.S. Stewart, S.J., Comparison of five short-term assays that measure nonspecific cytotoxicity mediated to tumor cells by activated macrophages. J. Leukocyte Biol., 1986. 40(801). 113.Birktoft, J.J., et al., Amino acid sequence homology among the 2-hydroxy acid dehydrogenases: mitochondrial and cytoplasmic malate dehydrogenases form a homologous system with lactate dehydrogenase. Proc Natl Acad Sci U S A, 1982. 79(20): p. 6166-70. 114.Adams, M.J., et al., Structure-function relationships in lactate dehydrogenase. Proc Natl Acad Sci U S A, 1973. 70(7): p. 1968-72. 115.Hsieh, K.M. and H.T. Blumenthal, Serum lactic dehydrogenase levels in various disease states. Proc Soc Exp Biol Med, 1956. 91(4): p. 626-30. 116.Macdonald, R.P., J.R. Simpson, and E. Nossal, Serum lactic dehydrogenase; a diagnostic aid in myocardial infarction. J Am Med Assoc, 1957. 165(1): p. 35-40. 117.BioVision, LDH-Cytotoxicity Assay Kit, Montain View. BioVision Research Products Catalog: p. K311-400. 118.n, T.e.c.h.n.i.c.a.l.B.u.l.l.e.t.i., CytoTox 96 ® Non-Radioactive Cytotoxicity Assay INSTRUCTIONS FOR USE OF PRODUCT G1780. promega. 119.Marshall, N.J., C.J. Goodwin, and S.J. Holt, A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function. Growth Regul, 1995. 5(2): p. 69-84. 120.Berridge, M.V. and A.S. Tan, Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys, 1993. 303(2): p. 474-82. 121.Berridge, M.V., Tan, A.S., McCoy, K.D., Wang, R., The biochemical and cellular basis of cell proliferation assays that superoxide radicals, whereas background reductionuse tetrazolium salts. Biochemica, 1996. 4: p. 15-20. 122.Pruett, S.B. and A.Y. Loftis, Characteristics of MTT as an indicator of viability and respiratory burst activity of human neutrophils. Int Arch Allergy Appl Immunol, 1990. 92(2): p. 189-92. 123.Stoward, P.J., Pearse, A.G.E., In: Histochemistry, Theoretical and Applied, 4th Edition. Churchill Livingstone, 1991: p. 1–25. 124.Ukeda, H., et al., Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3''--1--(phenylamino)-carbonyl--3,4-tetrazolium]-bis(4-methoxy-6- nitro) benzenesulfonic acid hydrate reduction by xanthine-xanthine oxidase. Anal Biochem, 1997. 251(2): p. 206-9. 125.Hiroyuki UKEDA1), D.K., Susumu MAEDA1) and Masayoshi SAWAMURA1), Spectrophotometric assay for superoxide dismutase based on the reduction of highly water-soluble tetrazolium salts by xanthine-xanthine oxidase. Bioscience, Biotechnology, and Biochemistry, 1999. 63(3): p. 485-488. 126.MICHAEL V. BERRIDGE, A.S.T., KATHY D. McCOY, and RUI WANG, The Biochemical and Cellular Basis of Cell Proliferation Assays That Use Tetrazolium Salts. biochemia, 1996. 4: p. 14-19. 127.Atsushi Kasai , N.S., Maki Oda , Michiya Kakuda, Hitoshi HashimotoToshio Matsuda, Shuji Hinuma, Akemichi Baba, Apelin is a novel angiogenic factor in retinal endothelial cells. Biochemical and Biophysical Research Communications 2004. 325: p. 395-400. 128.Sietsma, H., et al., 1-phenyl-2-decanoylamino-3-morpholino-1-propanol chemosensitizes neuroblastoma cells for taxol and vincristine. Clin Cancer Res, 2000. 6(3): p. 942-8. 129.Overgaard, K. and J. Overgaard, Investigations on the possibility of a thermic tumour therapy. I. Short-wave treatment of a transplanted isologous mouse mammary carcinoma. Eur J Cancer, 1972. 8(1): p. 65-78. 130.Lyons, B.E., R.H. Britt, and J.W. Strohbehn, Localized hyperthermia in the treatment of malignant brain tumors using an interstitial microwave antenna array. IEEE Trans Biomed Eng, 1984. 31(1): p. 53-62. 131.TAKEMORI.S , T.K., K NAGAE, H. YAMASHITA.I , KATO, H, KASAGI.T, MAEDA.M, HONDA.T, FUJIMAKI.M, a study of dds in hyperthermia : insuctive heating with use of dextran magnetite(DM). Drug delivery system, 1991. 6(465-470). 132.Shinkai, M., et al., Intracellular hyperthermia for cancer using magnetite cationic liposomes: in vitro study. Jpn J Cancer Res, 1996. 87(11): p. 1179-83.
|