跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8e11:74e4:2207:41a8) 您好!臺灣時間:2025/01/15 16:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李玉婷
研究生(外文):Yu-Ying Li
論文名稱:檸檬酸銨鐵表面改質應用於奈米粒子腫瘤熱治療法
論文名稱(外文):Ferric Ammonium Citrate Nanoparticle Surface Modified for Cancer Hyperthermia
指導教授:林峯輝
指導教授(外文):Feng-Huei Lin
口試委員:郭宗甫侯君翰王子威陳克紹
口試日期:2010-06-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:110
中文關鍵詞:檸檬酸胺鐵葉酸明膠
外文關鍵詞:Hyperthermiamagneticammonium ferric citratefolic acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在全球人類死因之中,惡性腫瘤近十五年來都位居第一,在現代社會中,許多因素使癌症細胞滋長,如菸,酒,檳榔,燒烤食物以及工作場所的輻射線…等,甚至壓力過大、煩惱太多等心理因素也會造成癌細胞的產生,且至今仍然沒有方法能夠完全地預防癌症。故醫治技術的開發與改良也成了不可或缺的一項要點。

目前癌症治療的方法常見的有四種:外科手術,放射線治療,化學藥物療法及溫熱療法等,其療法各有其優劣,溫熱療法中又以磁性奈米粒子較能深入針對癌細胞,故本研究主要著重於利用磁性奈米顆粒做為深入生物體的熱治療。

檸檬酸胺鐵(Ferric ammonium citrate),是一種被FDA認可能適用於人體的材料,由於其順磁性質,有許多研究顯示其材料可以做為MRI的顯影劑,且可大量被人體 (約50 kg) 飲用(用量約1200 mg),而在本研究室過去的研究指出,FAC亦可做為熱治療的磁性奈米粒子,但由於其超親水性容易散失於水性溶劑中(如水)故施打於人體靜脈容易導致其散失於血液中,因此,將檸檬酸胺鐵以明膠做表面改質,並以此作為後續接枝的媒介。

明膠為做奈米材料表面改質常用之原料,其通過FDA認可且有許多優點,如有相對較低的抗體與抗原反應,有許多胺基及醋酸根等官能基,能有效用於表面改質,是一種表面改質常用的材料。

聚乙二醇為一種親水性高分子,表面帶有負電極具有永動性,有助於避免巨噬細胞的吞噬效應及RES反應,因此可增加藥物在血液中存留的時間;葉酸為常見的奈米粒子表面改質之材料,由於肺癌細胞表面有大量的葉酸受體表現,故以葉酸接枝於奈米粒子表面做為標的腫瘤細胞之配合基,有助於增加藥物到達腫瘤細胞的劑量。

本實驗目的為將檸檬酸胺鐵以明膠作為表面改質的媒介並以葉酸及聚乙二醇做奈米粒子表面改質,其實驗方式為利用明膠再交聯過程中所需要用到的戊二醛作為交聯劑結合檸檬酸銨鐵及明膠,並以穿隧式電子顯微鏡、傅立葉紅外線光譜分析、磁滯分析、X光繞射分析、表面電位及粒徑分析確定材料達到表面改質之目的;以正常細胞 (HFL-1) 及肺癌細胞 (A549) 做LDH及WST-1生物相容性測試,進而以溫熱療法治療及含鐵量分析此兩種細胞。

由磁滯分析、X光繞射分析及升溫測試可知本材料雖屬順磁性但有良好的升溫效率且在表面改質後與改質前的升溫效率差異不大,由傅立葉紅外線光譜、表面電位及粒徑分析可知,檸檬酸銨鐵藉由明膠做為媒介可與聚乙二醇及葉酸鍵結,達到表面改質之目的。生物相容性實驗的部分,正常細胞 (HFL-1) 及肺癌細胞 (A549) 的LDH及WST-1測試顯示材料幾乎不具有細胞毒性;在細胞與材料共同在外加交流磁場下做42-46 ℃的細胞熱治療可知,肺癌細胞在死亡的數量明顯較正常細胞多,且在細胞與材料共同培養一小時後觀察細胞內含鐵量之結果可知,本材料經由表面改質後堆積於癌症細胞鐵含量也明顯較正常細胞多。故推測是檸檬酸胺鐵經表面改質後進入腫瘤細胞之劑量較正常細胞高,且癌症細胞承受熱治療的能力也明顯比正常細胞差,故檸檬酸銨鐵經由表面改質後可明顯增加其在腫瘤熱治療之效果。



The disease cause major death in human is the malignant tumor. However, the death rate of cancer has been unchanged for the past fifty years. Therefore, cancer therapy has become an important issue in the modern studies.

There are many treatments available for cancer therapy, such as surgery, chemotherapy, radiation therapy and hyperthermia, but these methods have some limitations such as they affect normal cell population as well except hyperthermia. Magnetic nanoparticles induction hyperthermia applies heat to cancers at the deep region in living body and overcomes some disadvantages of conventional cancer hyperthermia.

Because of the magnetic property, ferric ammonium citrate which had been approved by FDA (Food and Drug Adminstration ) and used as contrast agent for MRI (magnetic resonance imaging). Previous studies in our lab describe that ferric ammonium citrate can be also used as a magnetic particle for hyperthermia but it is very easily hydrolyzed. Therefore, it was concluded that surface immobilization of ferric ammonium citrate by gelatin may prolong the period of FAC in the blood circulation.

However, the surface modified nanoparticle for intravenous injection has to overcome RES and macrophage clearance in order to prolong the period in blood circulation and target to specific site.

The purpose of this study is to immobilize ferric ammonium citrate by gelatin and to surface modified by PEG-FA. In this study, gelatin immobilized ammonium ferric citrate was prepared by glutaraldehyde as cross-linking agent. PEG and FA used for material surface modification ware prepared by EDAC and NHS to crosslink PEG-FA and for AFC-Gel surface modification. The surface modification was characterized by TEM, FTIR, SQUID, XRD and zeta potential analysis. In addition, LDH and WST-1 are used to analysis the cytotoxicity of HFL-1 and A549. The uptake and hyperthermia in vitro test are used the analysis the efficiency of surface modified material target to the cells.

From the SQUID and XRD result, the FAC shows paramagnetic property. From TEM, FTIR, and Zeta potential analysis, the material has been crosslinked with surface modified by PEG and FA. From the LDH and WST-1 results, both FAC and surface modified FAC are not showed any significant difference on HFL-1 and A549. However, when surface modified FAC co-culture with HFL-1 and A549 under external alternative field for hyperthermia (42-46 ℃) showed significant cytotoxic on A549 but not on HFL-1. FAC with and without surface modification co-culture with HFL-1 and A549 and analysis the ferric ion by Prussian blue showed significant difference on A549 with surface modified FAC but not on FAC without surface modification. This result shows that FAC with surface modification will tend to retain lung cancer cells (A549) more than in normal cells (HFL-1) that cause lung cancer cells with surface modified FAC under external alternative field showed significant toxicity. In addition, lung cancer cells have lower heat resistance ability, decrease more than the normal cell under hyperthermia treatment.


Contents
致謝 i
ABSTRACT ii
摘要 iv
Contents vi
List of figures ix
List of tables xii
Chapter 1 Introduction 1
1.1 Prologue 1
1.2.1 Lung cancer 5
1.3 Cancer therapy 8
1.3.1 Surgery 8
1.3.2 Radiation therapy 9
1.3.3 Chemotherapy 11
1.3.4 Immunotherapy 13
1.3.5 Radiofrequency ablation (RFA) 15
1.3.6 Targeted therapy 15
1.3.7 Hyperthermia 17
1.4 Nanoparticles for hyperthermia 20
1.5 Hyperthermia 23
1.5.1 Hysteresis loss 23
1.5.2 Neel rotation 24
1.5.3 Brownian rotation 25
1.6.1 AEH(Arterial embolization hyperthermia) 28
1.6.2 DIH(direct injection hyperthermia) 29
1.6.3 IH(intercellular hyperthermia) 30
Chapter 2 Theory and background 32
2.1 Magnetic material 32
2.1.1 Paramagnetism 33
2.1.2 Ferromagnetism 34
2.1.3 Ferrimagnetism 35
2.1.4 Antiferromagnetism 35
2.1.5 Diamagnetism 37
2.2 Magnetic nanoparticle for biomaterial applications 38
2.2.1 Particle size 38
2.2.2 Specific targeting 40
2.3 FAC 42
2.4 Gelatin 44
2.5 Poly (ethylene glycol) 46
2.6 Folic Acid 48
2.7 T-boc 50
2.8 Purpose of study 51
Chapter 3 Material and Method 52
3.1 Raw Material 52
3.2 Equipment 54
3.3 Material preparation 56
3.4 Surface modified preparation 58
3.5 Material surface analysis 62
3.5.1 XRD (X-Ray Difussion) 62
3.5.2 Superconducting quantum interference device (SQUID) 65
3.5.3 Transmission electron microscopy (TEM) 68
3.5.5 Fourier transform infrared spectroscopy (FTIR) 72
3.6 Cell analysis 75
3.6.1 LDH 75
3.6.4 Cell uptake 81
Chapter 4 Results and Disicussion 83
4.1 XRD 83
4.2 SQUID 84
4.2 Temperature increasing test 85
4.3 TEM 86
4.4 Zeta sizer 87
4.5 FTIR 89
4.5.1 FAC FAC/gelatin 89
4.5.2 PEG FA 91
4.5.3 FAC FAC-gelatin 92
4.7 WST-1 96
4.9 In vitro hyperthermia test 97
Chapter 5 Conclusion 100
Reference 101



1.Ste′phane Mornet, S.b.V., Fabien Grasset and Etienne Duguet*, Magnetic nanoparticle design for medical diagnosis and therapy. Journal of MaterialsChemistry, 2004. 1 4: p. 2 1 6 1 – 2 1 7 5.
2.Jack A.Roth, J.D.C., Waun Ki Hong Lung cancer, third ed. Blackwell publishing, 2008.
3.Yuan, E., Cause of Death Statistics, Taiwan. Department of Health,, 2007.
4.László Tabár MDa, B.V.M., Hsiu-Hsi Chen PhDd, Stephen W. Duffy MSce, Ming-Fang Yen MScd, Ching-Feng Chiang BScd, Ulla Brith Krusemo BScf, Tibor Tot MDb and Robert A. Smith PhDg, THE SWEDISH TWO-COUNTY TRIAL TWENTY YEARS LATER: Updated Mortality Results and New Insights from Long-Term Follow-up Radiologic Clinics of North America, 1 July 2000. 38(4): p. 625-651
5.J. Ewing, W.B.S., Philadelphia, , Neoplastic Diseases: A Treaties on Tumors 4th ed. 1940.
6.李門輝, 癌的歷史記載和定義 癌的基礎科學. 合記圖書出版社, 1987: p. 15-19.
7.C. J. Marshall, E.A.N., Oncogenes and cell proliferation: Cancer genes: lessons from genetics and biochemistry Curr Opin Genent Dev, 1998. 8(1): p. 11-3.
8.Webb, D.D., GERD warrants increased physician appreciation and improved treatment Postgrad Med, 2001: p. spec no:5-10.
9.Connell, J.E. and D.C. D, Risk of ciguatera fish poisoning: impact on recommendations to eat more fish. Asia Pac J Clin Nutr, 2003. 12 Suppl: p. S67.
10. University of Washington, U.M.P., Respiratory: Lung Cancers. 2007.
11. Henschke CI, Y.D., Libby DM, Pasmantier MW, Smith JP, Miettinen OS, Surivival of patients with stage I lung cancer detected on CT screenung. N Engl J Med 2006, 2006. 355: p. 1763-1771.
12.Flieder DB, V.M., Carter D, Pathologic findings of lung tumors diagnosed on baseline CT screening. Am J surg Pathol, 2006. 30: p. 606-613.
13.James, J.S., Lung cancer: very high death rate with HIV, huge reduction possible with CT screening for early diagnosis. AIDS Treat News, 2006(420): p. 5-6.
14.Pathology, D.o.L.M., PC tumor image. 2005.
15.Ihde, D., et al., Small cell lung cancer. Lung Cancer, 1997. 17 Suppl 1: p. S19-21.
16.Thomas J. Lynch, M.D., Daphne W. Bell, Ph.D., Raffaella Sordella, Ph.D., Sarada Gurubhagavatula, M.D., Ross A. Okimoto, B.S., Brian W. Brannigan, B.A., Patricia L. Harris, M.S., Sara M. Haserlat, B.A., Jeffrey G. Supko, Ph.D., Frank G. Haluska, David N. Louis, David C. Christiani, Jeff Settleman, and Daniel A. Haber, Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non–Small-Cell Lung Cancer to Gefitinib. The new england journal of medicine, 2004. 350(21).
17.Ito, A., et al., Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng, 2005. 100(1): p. 1-11.
18.K. M. Sekins, J. K. Hoffman, M. R. Wolfson and T. H. Shaffer Feasibility of lung cancer hyperthermia using breathable perfluorochemical (PFC) liquids. Part I: Convective hyperthermia. INT. J. Hyperthermia, 2004. 20(3): p. 252–527.
19.Zwischenberger, J.B., et al., Percutaneous venovenous perfusion-induced systemic hyperthermia for advanced non-small cell lung cancer: initial clinical experience. Ann Thorac Surg, 2001. 72(1): p. 234-42.
20.Robins, H.I., et al., A pilot study of whole body hyperthermia and local irradiation for advanced non-small cell lung cancer confined to the thorax. Int J Radiat Oncol Biol Phys, 1988. 15(2): p. 427-31.
21.Aakash and P. Sabitha, Aspirin for diabetes: are we adhering to ADA guidelines? Natl Med J India, 2009. 22(1): p. 49.
22.Sakurai, H., et al., Effect of hyperthermia combined with external radiation therapy in primary non-small cell lung cancer with direct bony invasion. Int J Hyperthermia, 2002. 18(5): p. 472-83.
23.Zwischenberger, J.B., et al., Percutaneous venovenous perfusion-induced systemic hyperthermia for lung cancer: a phase I safety study. Ann Thorac Surg, 2004. 77(6): p. 1916-24; discussion 1925.
24.H. Sakurai, Y. Tamaki, T. Akimoto, O. Murta, and K.M. Y. Kitamoto, H. Ishikawa, K. Hayakawa and H. Niibe, Interaction between low dose-rate irradiation, mild hyperthermia and low-dose ca Ú eine in a human lung cancer cell line. int. j. radiat. biol, 1999. 75(6): p. 739- 745.
25.Andreas Jordan*, R.S., Peter Wust, Horst FaKhling, Roland Felix, Magnetic #uid hyperthermia (MFH): Cancer treatment with AC magnetic "eld induced excitation of biocompatible superparamagnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 1998. 201: p. (413-419.
26.Hall, E.J.a.A.J.G., Hyperthermia, in Radiobiology for the radiologist. Lippincott Williams & Wilkins: Philadelphia, 2000: p. 504.
27.Joseph B. Zwischenberger, M., Roger A. Vertrees, PhD, Eric A. Bedell, MD,Christopher K. McQuitty, MD, Jill M. Chernin, RN, and Lee C. Woodson, MD, PhD, Percutaneous Venovenous Perfusion-Induced Systemic Hyperthermia for Lung Cancer: A Phase I Safety Study. Ann Thorac Surg, 2004. 77: p. 1916-1925.
28.Joseph B. Zwischenberger, M., Roger A. Vertrees, PhD, CCP,Lee C. Woodson, MD, PhD, Eric A. Bedell, MD, Scott K. Alpard, BA,Christopher K. McQuitty, MD, and Jill M. Chernin, RN, Percutaneous Venovenous Perfusion-Induced Systemic Hyperthermia for Advanced Non±Small Cell Lung Cancer: Initial Clinical Experience. Ann Thorac Surg. 72: p. 234-242.
29.Sekins, K.M., et al., Feasibility of lung cancer hyperthermia using breathable perfluorochemical (PFC) liquids. Part I: Convective hyperthermia. Int J Hyperthermia, 2004. 20(3): p. 252-77.
30.H. Ian Robins, Anders Hugander, Richard Steeves, Warren H. Dennis, Radiotherapy and Hyperthermia for Lung Cancer Radiation Oncology Biol. Phys, 1986. 12: p. 147.
31.Sekins, K.M., et al., Feasibility of lung cancer hyperthermia using breathable perfluorochemical (PFC) liquids. Part II: Ultrasound hyperthermia. Int J Hyperthermia, 2004. 20(3): p. 278-99.
32.H.Ian Robins, M.D., Ph.D. 1, Walter L. Longo, M.D.1, Richard A. Steeves, M.D., Ph.D.1, Rhonda K. Lagoni1, Anders Hugander, M.D.2, Alan J. Neville, M.Ch.B.3, Stan O''Keefe1, William Giese, M.D.1, C.L. Schmitt1, A pilot study of whole body hyperthermia and local irradiation for advanced non-small cell lung cancer confined to the thorax Rodiurron Onmlo~y Bid. Ph.v., 1988. 15(421-443).
33.Sakurai, H., et al., Interaction between low dose-rate irradiation, mild hyperthermia and low-dose caffeine in a human lung cancer cell line. Int J Radiat Biol, 1999. 75(6): p. 739-45.
34.CH04B055, A.G., et al., Magneto Hyperthermia and Cancer Therapy Magneto Hyperthermia and Cancer Therapy, 2006.
35.Curtis, C.C.B.a.A.S.G., Functionalisation of magnetic nanoparticles for applications in biomedicine. JOURNAL OF PHYSICS D: APPLIED PHYSICS, 2003. 36: p. 198–206.
36.Osaka, T., et al., Synthesis of magnetic nanoparticles and their application to bioassays. Anal Bioanal Chem, 2006. 384(3): p. 593-600.
37.Hou, C.H., et al., The in vivo performance of biomagnetic hydroxyapatite nanoparticles in cancer hyperthermia therapy. Biomaterials, 2009. 30(23-24): p. 3956-60.
38.Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005. 26(18): p. 3995-4021.
39.Lattuada, M. and T.A. Hatton, Functionalization of monodisperse magnetic nanoparticles. Langmuir, 2007. 23(4): p. 2158-68.
40.Curtis, C.C.B.a.A.S.G., Functionalisation of magnetic nanoparticles for applications in biomedicine. JOURNAL OF PHYSICS D: APPLIED PHYSICS, 2003. 36: p. 198-206.
41.Zhang, J. and R.D. Misra, Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. Acta Biomater, 2007. 3(6): p. 838-50.
42.Salata, O., Applications of nanoparticles in biology and medicine. J Nanobiotechnology, 2004. 2(1): p. 3.
43.Moroz, P., S.K. Jones, and B.N. Gray, Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia, 2002. 18(4): p. 267-84.
44.Moroz, P., S.K. Jones, and B.N. Gray, Arterial embolization hyperthermia in porcine renal tissue. J Surg Res, 2002. 105(2): p. 209-14.
45.Moroz, P., et al., Arterial embolization hyperthermia: hepatic iron particle distribution and its potential determination by magnetic resonance imaging. Phys Med Biol, 2002. 47(9): p. 1591-602.
46.Erichsen, C., et al., Blockage of the hepatic-artery blood flow by biodegradable microspheres (Spherex) combined with local hyperthermia in the treatment of experimental liver tumors in rats. J Cancer Res Clin Oncol, 1985. 109(1): p. 38-41.
47.Bakke, A., et al., Augmentation of natural killer cell activity after arterial embolization of renal carcinomas. Cancer Res, 1982. 42(9): p. 3880-3.
48.Carlsson, G., et al., Effects of hepatic artery ligation and intraarterial embolization on liver tumor growth--an experimental study in rats. J Surg Oncol, 1981. 17(3): p. 249-61.
49.Moroz, P., C. Metcalf, and B.N. Gray, Histologic analysis of liver tissue following hepatic arterial infusion of ferromagnetic particles in a rabbit tumour model. Biometals, 2003. 16(3): p. 455-64.
50.Moroz, P., S.K. Jones, and B.N. Gray, Tumor response to arterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model. J Surg Oncol, 2002. 80(3): p. 149-56.
51.Lingyun Zhao 1 , W.J., Yongjian Jin 3 , Xiaowen Wang 1 , Xufei Wang 1 and Jintian Tang 1 Application of Carbonyl Iron Powder as a Novel Mediator for Arterial Embolization Hyperthermia—Feasibility Investigation IFMBE Proceedings 2009. 25: p. 172-175.
52.陳繼仁, 磁性陶瓷.
53.Q A Pankhurst 1 , J.C., S K Jones 3 and J Dobson, Applications of magnetic nanoparticles in biomedicine. JOURNAL OF PHYSICS D: APPLIED PHYSICS, 2002. 36: p. 167-181.
54.T. Nagamiya, K.Y., and R. Kubo, Antiferromagnetism. Advances in Physics, 1995. 4: p. 1-112.
55.n, T.M.A.a.n.d.A.C.h.o.n., Large unilamellar liposomes with low uptake into the reticuloendothelial system Biomedical Division, 1987. 223 (1): p. 42-46.
56.R. H. Müller, M.L., S. Harnisch, et al., Scientific and Clinical Applications of Magnetic Carriers. Häfeli, et al. (Eds.), Plenum Press, New York, 1997, 1997. 135.
57.Kreuter, J., Evaluation of nanoparticles as drug-delivery systems. II: Comparison of the body distribution of nanoparticles with the body distribution of microspheres (diameter greater than 1 micron), liposomes, and emulsions. Pharm Acta Helv, 1983. 58(8): p. 217-26.
58.Duguet, E., et al., Magnetic nanoparticles and their applications in medicine. Nanomedicine (Lond), 2006. 1(2): p. 157-68.
59.Monfardini, C. and F.M. Veronese, Stabilization of substances in circulation. Bioconjug Chem, 1998. 9(4): p. 418-50.
60.Monfardini, C., et al., Construction and binding kinetics of a soluble granulocyte-macrophage colony-stimulating factor receptor alpha-chain-Fc fusion protein. J Biol Chem, 1998. 273(13): p. 7657-67.
61.Zhang, Y. and J. Zhang, Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. J Colloid Interface Sci, 2005. 283(2): p. 352-7.
62.Gupta, A.K. and S. Wells, Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Trans Nanobioscience, 2004. 3(1): p. 66-73.
63.Gupta, A.K. and A.S. Curtis, Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med, 2004. 15(4): p. 493-6.
64.Baraton, M.I., synthesis functionalization and surface treatment of nanoparticles, stevenson Ranch: america scientific publishers. 2003: p. 233-256.
65.Barbara Stella, Silvia Apricco, Maria Terasa Peracchia, Didier Desmaeele, Johan Hoebeke, Michel Renoir, Jean D''angelo, Luigi Cattle, Patrick Couvreur Design of Folic Acid-Conjugated Nanoparticles for Drug Targeting. Journal of Pharmaceutical Siences, 2000. 89(11): p. 1452-1464.
66.Geroge A and Vinod P. SHAHS, Cross-Linking of Gelatin Capsules and Its Relevance to Their in Vitro-in Vivo Performance Journal of pharmaceutical Sciences, 1993. 83(7): p. 915-921.
67.C. Delgado, G.E.F., D. Fisher, The uses and properties of PEG-linked proteins, Crit. Rev. Ther. Drug Carrier Syst, 1992. 9: p. 91-114.
68.K. Kartre, The conjugation of proteins with poly(ethylene glycol) and other polymers. Adv. Drug Deliv, 1993. 10: p. 91-114.
69.Hideo Uchida, Kohki Yoshikawa, Nobuyuki Fujita, Kuni Ohtomo, Yuji Yuasa, Yasuyuki Kawamura and Osamu Matsui, Large scale clinical evaluation of bowel contrast agent containing Ferric Ammonium Citrate in MRI Magnetic Resonance Imaging, 1994. 12(6): p. 837-846.
70.Kivelitz, D., et al., Ferric ammonium citrate as a positive bowel contrast agent for MR imaging of the upper abdomen. Safety and diagnostic efficacy. Acta Radiol, 1999. 40(4): p. 429-35.
71.Randall M.Patten,M.S.K.L., MDJeffrey J. Phillips, Steven C. Bowman, MD, M.S.D.W. Gary M. Glazer, James G. Bova, DO Robert D. Harris, MD Richard , L. Wheat, C. Daniel Johnson, Herbert Y. Kressel, MD, and R.A.H. Arthur E. Stillman, Jr. Albert A. Moss, Positive Bowel Contrast Agent for MR Imaging of the Abdomen: Phase II and III Clinical Trials’. 1999.
72.Broglia, L., et al., [Optimization of dosage and exam technique in the use of oral contrast media in magnetic resonance]. Radiol Med, 1999. 97(5): p. 365-70.
73.Ritchis-Carola, Biology. Addusib-Weskey, 1983: p. 85-97.
74.Eastoe, J.E., The amino acid composition of mammalian collagen and gelatin. Biochem J, 1955. 61(4): p. 589-600.
75.Ward, A.G., Chem. & Ind. 1954: p. 502.
76.SCHWICK, H.G., and HEIDE, K., Immunochemistry and immunology of collagen and gelatin [Review]. Bibliotheca Haematologica,, 1969. 3: p. 111-125.
77.Chvapil M. Collagen sponge, theory and practice of medical applications. J Biomed Mater Res, 1977. 11: p. 721-41.
78.Sela M, A.R., Studies on the chemical basis of the antigenicityof proteins. 1. Antigenicity of polypeptidyl gelatins.. Biochem J, 1960. 75: p. 91-102.
79.Anderson JM, M.K., Biomaterial biocompatibility and the macrophage. . Biomaterials 1984. 5: p. 5-10.
80.Tabata Y, I.Y., Macrophage activation through phagocytosis of muramyl dipeptide encapsulated in gelatin microsphere.. Pharm Pharmacol 1987. 39: p. 698-704.
81.H AÈ SSIG, A., and STAMPFLI, K.,, Plasma substitutes past and present. Bibliotheca Haematologica, 1969. 33: p. 1± 8.
82.Tomihata K, B.K., Shiraki K, Ikada Y., Cross-linking and biodegradation of native and denatured collagen. In: Shalaby SW,
Ikada Y, Langer RS, Williams J, editors. Polymers of biological and biomedical importance. . American Chemical Society Symp Series, 1994. 540.
83.M, C., Consideration on manufacturing principles of a synthetic burn dressing, a review Biomat Mater Res 1982. 16: p. 145-163.
84.Ching-Li Tseng , F.-H.L., PREPARATION OF GELATIN NANOPARTICLES WITH EGFR SELECTION ABILITY VIA BIOTINYLATED-EGF CONJUGATION FOR LUNG CANCER TARGETING. Biomedical Engineering, 2008. 20(3): p. 161-169.
85.* Paolo Caliceti , F.M.V., pharmacokinetic and biodistribution properties of poly(ethylene glycol)–protein conjugates. Advanced Drug Delivery Reviews, 2003. 55: p. 1261–1277.
86.Min-Hua.Cheng, Folic Acid immobilized ferrimagnetic DP-Bioglass to target tumor cell for cancer hyperthermia. Nation Tiapei University of Technology master thesis, 2006: p. 13.
87.Mary L. Nucci, R.S.a.A.A., The therapeutic value of poly(ethylene glycol)- modified proteins Advanced Drug Delivery Reviews, 1991. 6: p. 133-151.
88.Yingjuan Lu , P.S.L., mmunotherapy of folate receptor-expressing tumors: review of recent advances and future prospects. Journal of Controlled Release 2002. 91: p. 17-29.
89.Aron M. Troen, B.M., Bess Sorensen, Mark H. Wener, Abbey Johnston,* Brent Wood, Jacob Selhub,* Anne McTiernan,Yutaka Yasui,Evrim Oral,John D. Potter, and Cornelia M. Ulrichy, Unmetabolized Folic Acid in Plasma Is Associated with Reduced Natural Killer Cell Cytotoxicity among Postmenopausal Women. American Society for Nutrition, 2006: p. 189-194.
90.Gabizon, A., et al., Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev, 2004. 56(8): p. 1177-92.
91.Gabizon, A., et al., Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug Chem, 1999. 10(2): p. 289-98.
92.Stella, B., et al., Design of folic acid-conjugated nanoparticles for drug targeting. J Pharm Sci, 2000. 89(11): p. 1452-64.
93.Pellois, J.P., W. Wang, and X. Gao, Peptide synthesis based on t-Boc chemistry and solution photogenerated acids. J Comb Chem, 2000. 2(4): p. 355-60.
94.Wakselman, “Di-t-butyl Dicarbonate” in Encyclopedia of Reagents for Organic Synthesis. J. Wiley & Sons, 2004.
95.Saul Jaime-Figueroa, A.Z., Angel Guzma′n,and David J. Morgans,Jr., N-3-Alkylation of uracil and derivatives via N-1-BOC protection. Synthetic Communication, 2001. 31(24): p. 3739-3746.
96.Ayelet Nudelman'', Y.B., Eliezer Falb'', Bilha Fischerl, Barry A. WexlerZ and Abraham Nudelman'' Acetyl Chloride-Methanol as a Convenient Reagent for: A) Quantitative Formation of Amine Hydrochlorides B) Carboxylate Ester Formation C) Mild Removal of N-t-Boc-Protective Group. 1998. 28(3): p. 471-474
97.Yong Zhang , J.Z., Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. Journal of Colloid and Interface Science 2005. 283: p. 352-357.
98.S.R.Stock, B.D.C.a., Element of X-ray differaction forth edition. Prentice Hall: p. 1-13.
99.medicine, s., Protein Crystallography Course. Basic diffraction: waves, interference and reciprocal space. 3.
100.M. P. Janawadkar, R.B., Rita Saha, K. Gireesan, R. Nagendran, L. S. Vaidhyanathan, and J.J.a.T.S. Radhakrishnan*, SQUIDs – Highly sensitive magnetic sensors. 1999.
101.A. VETTOLIERE ∗ , C.G., B. RUGGIERO and M. RUSSO, SUPERCONDUCTING QUANTUM INTERFERENCE MAGNETOMETER FOR LARGE MULTICHANNEL SYSTEMS WITH LOW CROSSTALK LEVEL. International Journal of Modern Physics B, 2009. 23(31): p. 5759–5767.
102.R Cabassi, F.B.a.F.C., Differential method for sample holder background subtraction in superconducting quantum interference device (SQUID) magnetometry. MEASUREMENT SCIENCE AND TECHNOLOGY, 25 January 2010. 21.
103.2001, Electron Diffraction Using Transmission Electron Microscopy. Journal of Research of the National Institute of Standards and Technology. 106(6).
104.Reimer, L., Transmission Electron Microscopy Physics of Image Formation and Microanalysis Fourth Edition. Springer.
105.L.G. Wade, J., organic chemistry.
106.Garip, S. and F. Severcan, Determination of simvastatin-induced changes in bone composition and structure by Fourier transform infrared spectroscopy in rat animal model. J Pharm Biomed Anal, 2010. 52(4): p. 580-8.
107.Garcia-Quintana, D., et al., Fourier transform infrared spectroscopy indicates a major conformational rearrangement in the activation of rhodopsin. Biophys J, 1995. 69(3): p. 1077-82.
108.Oldham, R.K., et al., Direct comparison of three isotopic release microtoxicity assays as measures of cell-mediated immunity to Gross virus-induced lymphomas in rats. J Natl Cancer Inst, 1977. 58(4): p. 1061-7.
109.Bruning, J.W., M.J. Kardol, and R. Arentzen, Carboxyfluorescein fluorochromasia assays. I. Non-radioactively labeled cell mediated lympholysis. J Immunol Methods, 1980. 33(1): p. 33-44.
110.Blomberg, K., et al., Europium-labelled target cells in an assay of natural killer cell activity. I. A novel non-radioactive method based on time-resolved fluorescence. J Immunol Methods, 1986. 86(2): p. 225-9.
111.Parish, C.R. and A. Mullbacher, Automated colorimetric assay for T cell cytotoxicity. J Immunol Methods, 1983. 58(1-2): p. 225-37.
112.Russell, S.W., Pace, J.L., Varesio, L., Akporiaye, E., Blasi, E., , A. Celado, Schreiber, R.D., Schultz, R.M., Stevenson, A.P., , and C.C.a.S. Stewart, S.J., Comparison of five short-term assays that measure nonspecific cytotoxicity mediated to tumor cells by activated macrophages. J. Leukocyte Biol., 1986. 40(801).
113.Birktoft, J.J., et al., Amino acid sequence homology among the 2-hydroxy acid dehydrogenases: mitochondrial and cytoplasmic malate dehydrogenases form a homologous system with lactate dehydrogenase. Proc Natl Acad Sci U S A, 1982. 79(20): p. 6166-70.
114.Adams, M.J., et al., Structure-function relationships in lactate dehydrogenase. Proc Natl Acad Sci U S A, 1973. 70(7): p. 1968-72.
115.Hsieh, K.M. and H.T. Blumenthal, Serum lactic dehydrogenase levels in various disease states. Proc Soc Exp Biol Med, 1956. 91(4): p. 626-30.
116.Macdonald, R.P., J.R. Simpson, and E. Nossal, Serum lactic dehydrogenase; a diagnostic aid in myocardial infarction. J Am Med Assoc, 1957. 165(1): p. 35-40.
117.BioVision, LDH-Cytotoxicity Assay Kit, Montain View. BioVision Research Products Catalog: p. K311-400.
118.n, T.e.c.h.n.i.c.a.l.B.u.l.l.e.t.i., CytoTox 96 ® Non-Radioactive Cytotoxicity Assay INSTRUCTIONS FOR USE OF PRODUCT G1780. promega.
119.Marshall, N.J., C.J. Goodwin, and S.J. Holt, A critical assessment of the use of microculture tetrazolium assays to measure cell growth and function. Growth Regul, 1995. 5(2): p. 69-84.
120.Berridge, M.V. and A.S. Tan, Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys, 1993. 303(2): p. 474-82.
121.Berridge, M.V., Tan, A.S., McCoy, K.D., Wang, R., The biochemical and cellular basis of cell proliferation assays that superoxide radicals, whereas background reductionuse tetrazolium salts. Biochemica, 1996. 4: p. 15-20.
122.Pruett, S.B. and A.Y. Loftis, Characteristics of MTT as an indicator of viability and respiratory burst activity of human neutrophils. Int Arch Allergy Appl Immunol, 1990. 92(2): p. 189-92.
123.Stoward, P.J., Pearse, A.G.E., In: Histochemistry, Theoretical and Applied, 4th Edition. Churchill Livingstone, 1991: p. 1–25.
124.Ukeda, H., et al., Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3''--1--(phenylamino)-carbonyl--3,4-tetrazolium]-bis(4-methoxy-6- nitro) benzenesulfonic acid hydrate reduction by xanthine-xanthine oxidase. Anal Biochem, 1997. 251(2): p. 206-9.
125.Hiroyuki UKEDA1), D.K., Susumu MAEDA1) and Masayoshi SAWAMURA1), Spectrophotometric assay for superoxide dismutase based on the reduction of highly water-soluble tetrazolium salts by xanthine-xanthine oxidase. Bioscience, Biotechnology, and Biochemistry, 1999. 63(3): p. 485-488.
126.MICHAEL V. BERRIDGE, A.S.T., KATHY D. McCOY, and RUI WANG, The Biochemical and Cellular Basis of Cell Proliferation Assays That Use Tetrazolium Salts. biochemia, 1996. 4: p. 14-19.
127.Atsushi Kasai , N.S., Maki Oda , Michiya Kakuda, Hitoshi HashimotoToshio Matsuda, Shuji Hinuma, Akemichi Baba, Apelin is a novel angiogenic factor in retinal endothelial cells. Biochemical and Biophysical Research Communications 2004. 325: p. 395-400.
128.Sietsma, H., et al., 1-phenyl-2-decanoylamino-3-morpholino-1-propanol chemosensitizes neuroblastoma cells for taxol and vincristine. Clin Cancer Res, 2000. 6(3): p. 942-8.
129.Overgaard, K. and J. Overgaard, Investigations on the possibility of a thermic tumour therapy. I. Short-wave treatment of a transplanted isologous mouse mammary carcinoma. Eur J Cancer, 1972. 8(1): p. 65-78.
130.Lyons, B.E., R.H. Britt, and J.W. Strohbehn, Localized hyperthermia in the treatment of malignant brain tumors using an interstitial microwave antenna array. IEEE Trans Biomed Eng, 1984. 31(1): p. 53-62.
131.TAKEMORI.S , T.K., K NAGAE, H. YAMASHITA.I , KATO, H, KASAGI.T, MAEDA.M, HONDA.T, FUJIMAKI.M, a study of dds in hyperthermia : insuctive heating with use of dextran magnetite(DM). Drug delivery system, 1991. 6(465-470).
132.Shinkai, M., et al., Intracellular hyperthermia for cancer using magnetite cationic liposomes: in vitro study. Jpn J Cancer Res, 1996. 87(11): p. 1179-83.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊