跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 04:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳昱萱
研究生(外文):Yu-Syuan Wu
論文名稱:應用垂直式光徑煙流分布預測石化工業區之排放量
論文名稱(外文):Applying Vertical Radial Plume Mapping to Estimate Emission Rate in Petro Chemical Industry
指導教授:吳章甫吳章甫引用關係
指導教授(外文):Chang-Fu Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:英文
論文頁數:272
中文關鍵詞:排放量AP-42Other Test Method 10垂直式光徑煙流分布光學遙測開徑式傅立轉換光譜儀
外文關鍵詞:emission rateAP-42Other Test Method 10Vertical Radial Plume MappingOptical Remote SensingOP-FTIR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:435
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
環保署對於來自固定性及非點源的揮發性有機化學物質的排放(例如:石油化學工業之製程)制定法律並收取費用。這個費用是依據排放量計算的結果收費,此收費所遵照的排放量計算標準是依據美國環保署所公告的AP-42方法(空氣汙染排放因子轉換)。這些排放因子是建立在許多假設結合一些可用資料所推估而得到的,且是依據美國的產業型態制定。美國環保署在2006年公布的Other Test Method 10中的垂直式光徑煙流分布方法,應用開徑式光徑積分的光學遙測技術,搭配多條不重疊的光徑,此方法有潛力成為取代現行排放量推估之方法。因為垂直式光徑煙流分布方法是根據特定的製程實際量測物質的濃度進而計算排放量,與存在許多假設的排放因子方法相比較具信賴性。此研究中利用開徑式傅立葉轉換光譜儀進行垂直式光徑煙流分布實驗。選擇四個石化工廠進行現場實驗。垂直式光徑煙流分布是一個二維的測量平面,此平面由三個光徑所組成。每場次實驗的光徑長度及反射鏡高度為配合目標製程去架設。收集濃度資料的同時也收集風向風速資料。為了驗證實驗的正確性,實驗進行中於製程中釋放已知排放量的SF6的追蹤氣體。在資料分析部分,將濃度資料、風速資料和分子量等做計算並積分已獲得各物質之排放量。重建結果使用CCFPIC between measured and predicted path integrated concentration (PIC)來判定。符合特定濃度趨勢(低測線濃度最高,中間測線次之,高空測線濃度最低)的資料重建結果之CCFPIC大部分都大於0.8。前兩場排放量計算結果十分接近真實的排放量,約低估20%。後兩場實驗結果雖低估非常嚴重,但也因此探討出許多會影響VRPM方法的重要因素:風向、tracer gas的擺放、測線長度相對於目標製程的長度、反射鏡的高度。
In Taiwan, VOCs emitted from fixed and fugitive pollution sources (such as various industrial processes in petrochemical industries) are being charged due to a regulation by the EPA. This fee is calculated based on the estimated emission rate of VOCs using the U.S. EPA’s Method AP-42 Compilation of Air Pollutant Emission Factors. However, these emission factors, which come from equations based on averages of available data, incorporate many assumptions and are not plant specific. The Vertical Radial Plume Mapping (VRPM) technique described in the Other Test Method 10 (OTM-10) of the U.S. EPA, which was released recently in 2006 and applies open-path path integrated – optical remote sensing (PI-ORS) system with multiple beam configurations, is a potential alternative to estimate the emission rates. Since the estimated emission rates from VRPM are calculated from measurement data at specific plants, rather than from assumed emission factors, these estimates should be more reliable. In this study, we evaluated the VRPM of OTM-10 in complicated petro-chemical industries. Open-Path Fourier Transform Infrared (OP-FTIR) spectroscopy was used to measure the emission rates in VRPM. Four factories in a petro-chemical industrial area were selected for field experiments. The VRPM configuration is a 2-D vertical plane. Length of beam paths and height of retroreflectors in the VRPM configuration were set up according to objective manufacturing process. The wind direction and wind speed were measured simultaneously. To verify the accuracy of experiment, we release the amount of the tracer gas of SF6 we know during manufacturing process. The amount of emission was obtained by integrating the data of concentration obtained from OP-FTIR measurement and reconstruction algorithm then multiplied by wind speed. Concordance Correlation Factor (CCFPIC) between measured and predicted path integrated concentration (PIC) was used to judge the fitting quality of the reconstruction results. PIC data which fit specific pattern (Among three beam paths the concentration of ground level is the highest, top level the lowest, middle level falls between the top level and ground level.) indicated that the CCFPIC were mostly higher than 0.8. In the first two field campaigns, the calculation result of the amount of emission is quite close to the true value, around 20% was underestimated. Although the last two field campaign provided a highly underestimated result, some important factors were derived: wind direction, arrangement of tracer gas, length of beam paths (compared with objective manufacturing process) and height of retrorelectors.
Contents
CHINESE ABSTRACT (中文摘要) III
ABSTRACT V
FIGURE CONTENTS IX
TABLE CONTENTS XI
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND 1
1.1.1 Open-Path Fourier Transformed Infrared Spectrometer (OP-FTIR) 2
1.1.2 Computed Tomography (CT) and Radial Plume Mapping (RPM) 4
1.1.3 Non-Grid Method ─ Smooth Basis Function Minimization (SBFM) 7
1.1.4 Estimating Emission Rate 8
1.2 RESEARCH OBJECTIVE 24
1.3 STUDY DESIGN 24
CHAPTER 2 METHODS AND MATERIALS 26
2.1 INSTRUMENTS 26
2.2 DATA COLLECTION 27
2.3 DATA ANALYSIS 33
2.3.1 Spectrum Analysis 33
2.3.2 Plume reconstruction 35
2.3.3 Flux estimation 37
CHAPTER 3 RESULTS AND DISCUSSION 42
3.1 QUANTIFICATION OF OP-FTIR DATA 42
3.2 PLUME RECONSTRUCTION 55
3.3 FLUX ESTIMATION 63
3.4 COMPARING THE FLUX WITH THE EMISSION FACTOR METHOD 81
3.5 SUMMARY 86
CHAPTER 4 CONCLUSIONS & RECOMMENDATIONS 93
REFERENCES 96
APPENDIX I: QUANTIFUCATION PROGRAMS 207
APPENDIX II: UPWIND / DOWNWIND CONCENTRATION PLOTS 215
APPENDIX III: COMPARING THE DIFFERENT WIND SPEED SCREEING 267
References
1.U. S. EPA, (U.S. Environmental Protection Agency 2006).
2.D. A. Kirchgessner, S. D. Piccot and A. Chadha Estimation of methane eissions from a surface coal-mine using open-path FTIR spectroscopy and modeling techniques; Chemosphere 1993, 26 (1-4), 23-44.
3.L. Todd and D. Leith Remote-Sensing and Computed-Toography in Industrial-Hygiene; American Industrial Hygiene Association Journal 1990, 51 (4), 224-233.
4.S. D. Piccot, S. S. Masemore, E. S. Ringler, S. Srinivasan, D. A. Kirchgessner and W. F. Herget Validation of a method for estimating pollution emission rates from area sources using open-path FTIR spectroscopy and dispersion modeling techniques Journal of the Air & Waste Management Association 1994, 44 (3), 271-279.
5.M. G. Yost, A. C. Gadgil, Y. Z. Drescher, M. A. Simonds and S. P. Levine Imaging Indoor Tracer-Gas Concentrations with Computed Tomography: Experimental Results with a Remote Sensing FTIR system American Industrial Hygiene Association Journal 1994, 55 (5), 395-402.
6.S. D. Piccot, S. S. Masemore, W. LewisBevan, E. S. Ringler and D. B. Harris Field assessment of a new method for estimating emission rates from volume sources using open-path FTIR spectroscopy; Journal of the Air & Waste Management Association 1996, 46 (2), 159-171.
7.U.S. Environmental Protection Agency. Compendium Method TO-16: Long-Path Open-Path Fourier Transform Infrared Monitoring of Atmospheric Gases; U.S. Environmental Protection Agency, Center for Environmental Research Information-Office of Research and Development: Cincinnati, Ohio: 1999.
8.洪珮珮, in 勞工安全衛生簡訊 (勞工安全衛生研究所, 1996), Vol. 17.
9.B. C. Smith Fundamentals of Fourier Transform Infraded Spectroscopy; Boca Pation: VRC Press: 1996.
10.張寶額, 楊人芝, 蘇仁偉, 劉興瑲 and 李俊泓. 九十五年度運用紅外光遙測技術執行石化工業區汙染監測計畫; 行政院環境保護署: 2006.
11.劉興瑲, 蔣立中, 施百鴻, 張寶額 and 楊人芝, in 2007年「第2屆環境與生命科技學術研討會」壁報論文比賽 (2007).
12.R. L. Byer and L. A. Shepp 2-Dimensional Remote Air-Pollution Monitoring Via Tomography; Optics Letters 1979, 4 (3), 75-77.
13.L. A. Todd Mapping the Air in Real-Time to Visualize the the Flow of Gases and Vapors: Occupational and Environmental Application; Applied Occupational & Environmental Hygiene 2000, 15 (1), 106-113.
14.A. R. Piper, L. A. Todd and K. Mottus A Field Study Using Open-Path FTIR Spectroscopy to Measure and Map Air Emissions from Volume Source Field Analytical Chemistry and Technology 1999, 3 (2), 69-79.
15.D. Y. Park, M. G. Yost and S. P. Levin Evaluation of Virtual Source Beam Configurations for Rapid Tomographic Reconstruction of Gas and Vapor Concentrations in Workplaces; Journal of the Air & Waste Management Association 1997, 47 (5), 582-591.
16.R. L. Byer and L. A. Shepp Two-diensional remote air-pollution monitoring via tomography; Optics Letters 1979, 4 (3), 75-77.
17.R. C. Shores, Bruce Harris, Edgar L. Thompson, Chester A. Vogel, David Natschke, Ram A. Hashmonay and Keith R. Wagoner Plane-Integrated Open-Path Fourier Transform Inferaded Spectrometery Methodology for Anaerobic Swine Lagoon Emission Measurements; American Society of Agricultural Engineers 2005, 21 (3), 487−492.
18.G. n. Rasmus, Mikael Sjo¨ holm, Petter Weibring, Hans Edner and S. Svanberg Elemental mercury emissions from chlor-alkali plants measured by lidar techniques; Atmospheric Environment 2005, 39 7474-7480.
19.G. R. Southworth, S. E. Lindberg, H. Zhang and F. R. Anscombe Fugitive mercury emissions from a chlor-alkali factory: sources and fluxes to the atmosphere; Atmospheric Environment 2004, 38, 597–611.
20.R. A. Hashmonay, M. G. Yost and C. F. Wu Compute Tomogrphy of Air Pollutants Using Radial Scanning Path-Integrated Optical Remote Sensing; Atmospheric Environment 1999, 33 (2), 267-274.
21.U. S. EPA, edited by U. S. EPA (2005), Vol. EPA-600/R-05/096.
22.U. S. EPA, edited by U. S. EPA (2005), Vol. EPA-600/R-05/041.
23.R. A. Hashmonay and M. G. Yost Localizing gaseous fugitive emission sources by combining real-time optical remote sensing and wind data; Journal of the Air & Waste Management Association 1999, 49 (11), 1374-1379.
24.R. A. Hashmonay Theoretical Evaluation of a Method for Locating Gaseous Emission Hot Spots; Journal of the Air & Waste Management Association 2008, 58, 1100-1106.
25.S.-Y. Chang Using 2-D Radial Plume Mapping Technique with OP-FTIR for Source Localization: Evaluation of Reconstruction Algorithms; National Taiwan University, 2008.
26.C.-H. Chen Using OP-FTIR to Localize Emission Sources in Ambient Environent; National Taiwan University, Taipei, 2008.
27.U.S. Environmental Protection Agency. AP-42, Fifth Edition Compilation of Air Pollutant Emission Factors, Volume 1: Stationary Point and Area Sources; 1996.
28.A. K. Chambers, M. Strosher, T. Wootton, J. Moncrieff and P. McCready Direct Measurement of Fugitive Emissions of Hydrocarbons from a Refinery; Journal of the Air & Waste Management Association 2008, 58, 1047-1056.
29.S.-C. Onn, C.-N. Fu, J.-M. Shiaw and S.-H. Liu Computational Model of Volatile Organic Compounds Emission Rate of Process Equipments Using Modified Correlation Approach; Journal of China Institute of Technology 2004, 31, 263-275.
30.蔡俊鴻. 石化業上中游工廠附近大氣環境中之VOC特微成份濃度分佈調查; 行政院環境保護署: 1998
31.Rasmus Gro¨ nlund, Mikael Sjo¨ holm, Petter Weibring, Hans Edner and S. Svanberg Elemental mercury emissions from chlor-alkali plants measured by lidar techniques; Atmospheric Environment 2005, 39 7474-7480.
32.R. A. Hashmonay, M. G. Yost, Y. Mamane and Y. Benayahu Emission rate apportionment from fugitive sources using open-path FTIR and mathematical inversion; Atmospheric Environment 1999, 33 (5), 735-743.
33.M. V. Ravi, R. A. Hashmonay, R. Kagann and A. Bolch. Optical Remote Sensing to Determine Strength of Non-point Sources: ESTCP#CP-0214 Duke Forest Validation Study; 2005.
34.U. S. EPA, edited by U. S. EPA (2007), Vol. EPA/600/R-07/032.
35.R. A. Hashmonay and M. G. Yost Innovative approach for estimating fugitive gaseous fluxes using computed tomography and remote optical sensing techniques; Journal of the Air & Waste Management Association 1999, 49 (8), 966-972.
36.R. A. Hashmonay, D. F. Natschke, K. Wagoner, D. B. Harris, E. L. Thompson and M. G. Yost Field evaluation of a method for estimating gaseous fluxes from area sources using open path Fourier transform infrared; Environmental Science & Technology 2001, 35 (11), 2309-2313.
37.E. D. Thoma, C. Secrest, E. S. Hall, D. L. Jones, R. C. Shores, M. Modrak, R. Hashmonay and P. Norwood Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring; Atmospheric Environment 2009, 43, 753-757.
38.E. D. Thoma, edited by U. S. E. P. Agency (2007).
39.U. S. EPA, edited by U. S. EPA (2004), Vol. EPA-600/R-04-001.
40.E. D. Thoma, R. C. Shores, E. L. Thompson, D. B. Harris, S. A. Thorneloe, R. M. Varma, R. A. Hashmonay, M. T. Modrak, D. F. Natschke and H. A. Gamble Open-path tunable diode laser absorption spectroscopy for acquisition of fugitive emission flux data; Journal of the Air & Waste Management Association 2005, 55 (5), 658-668.
41.K. S. RO, M. H. Johnson, M. V. Ravi and R. A. Hashmonay Measurement of greenhouse gas emissions from agricultural sites using openpath optical remote sensing method; Journal of Environmental Science and Health 2009, 44, 1011-1018.
42.R. A. Hashmonay, M. G. Yost and C. F. Wu Computed Tomography of Air Pollutants Using Radial Scanning Path-Integrated Optical Remote Sensing; Atmospheric Environment 1999, 33 (2), 267-274.
43.Y. Ren, Y. Li, J. Wang, X. Wang, B. Liu, L. Zhang and L. Zhang Reconstruction of Air Contaminant Concentration Distribution in a Two-dimentional Plane by Computed Tomography and Remote Sensing FTIR Spectroscopy; Journal of Environmental Science and Health 2005, 40, 571-180.
44.T. M. R. Center.
45.行政院環境保護署, edited by 行政院環境保護署 (2003).
46.U.S. Environmental Protection Agency. Measurement of Total Site Mercury Emissions for a Chlor-alkali Plant Using Open-Path UV-DOAS; 2007.
47.S. Yahaya and J. P. Frangi Cup anemometer response to the wind turbulence – measurement of the horizontal wind variance; Annales Geophysicae 2004, 22, 3363–3374.
48.S. Franchini, A. Sanz-Andres and A. Cuerva Measurement of velocity in rotational flows using ultrasonic anemometry: the flowmeter; Exp Fluids 2007, 42, 903–911.
49.E. Nemitz, B. Loubet, B. E. Lehmann, P. Cellier, A. Neftel, S. K. Jones, A. Hensen, B. Ihly, S. V. Tarakanov and M. A. Sutton Turbulence characteristics in grassland canopies and implications for tracer transport; Biogeosciences 2009, 6, 1519–1537.
50.E. Nemitz, K. J. Hargreaves, A. Neftel, B. Loubet, P. Cellier, J. R. Dorsey, M. Flynn, A. Hensen, T.Weidinger, R. Meszaros, L. Horvath, U. Dammgen, C. Fruhauf, F. J. Lopmeier, M. W. Gallagher and M. A. Sutton Intercomparison and assessment of turbulent and physiological exchange parameters of grassland; Biogeosciences 2009, 6, 1445-1466.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊