(18.205.60.226) 您好!臺灣時間:2019/12/15 11:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:詹朝竣
研究生(外文):Chao-Chun Chan
論文名稱:以海綿為衝擊介質呼吸性粉塵分徑採樣器之佳化研究
論文名稱(外文):Using Porous Foam as Impaction Substrate for Optimization of Respirable Aerosol Sampler
指導教授:陳志傑陳志傑引用關係
指導教授(外文):Chih-Chieh Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:65
中文關鍵詞:氣膠採樣海綿衝擊器呼吸性粉塵微粒彈跳
外文關鍵詞:aerosol samplingporous polyurethane foamimpactorrespirableparticle bounce
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前對於作業場所呼吸性粉塵在採樣上的分徑準則上乃是以美國工業衛生技師協會(ACGIH)、國際標準組織(ISO)、以及歐洲標準委員會(CEN)等三個機構所共同研商協議的結果為準則。目前已發展出以多孔泡棉作為在前置分徑裝置來達成呼吸性粉塵採樣曲線之要求。此外,將海綿應用在衝擊採樣器上微粒收集介質的研究也為數多有,並顯示海綿在解決微粒撞擊衝擊面之後的彈跳現象有明顯之改善,但目前尚未有海綿孔隙數與其他特性對於衝擊收集效應影響之深入探討。海綿作為衝擊器之收集介質方面,本研究藉由改變海綿孔隙數、直徑大小、厚度與封邊套環之有無提供不同的穿透率需求,並尋求最接近呼吸性粉塵曲線之最佳組合,以達到採樣器佳化之目的。
本款採樣器在使用上仍有微粒彈跳之問題,但可藉調整海綿直徑來改變穿透率曲線之斜率,以減小微粒彈跳所造成的影響。而微粒負載後再度彈跳之問題,顯示本採樣器並不適宜用於氣膠粒徑較大的環境之中。
In order to match the ISO/CEN/ACGIH respirable sampling criteria, applying porous polyurethane foam (PUF) to impactors on particle aerodynamic size fractioning has been studied. However, one of the inherent problems of impactors is particle bounce off the collecting plates, even though a foam substrate was applied. There is no study to examine the effect of porosity of foam on fractioning and loading property. The objective of this study is to optimize a respirable aerosol sampler with foam and identifying the foam’s effects on sampling efficiency.
Using PUF with a diameter of 3 mm at a flow rate of 1.8 lpm was demonstrated to meet the ISO/CEN/ACGIH respirable sampling criteria well in this study. Results also showed that particle bounce can be minimized by applying PUF as collecting substrate. However, this impactor is not suitable applying for large diameter aerosol environments because of its available time is about 15 mins.
致謝 i
目錄 ii
圖表目錄 iv
中文摘要 vi
英文摘要 vii

第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 3

第二章 文獻探討 5
2.1國際建議分徑標準與分徑式採樣器 5
2.2慣性衝擊原理與衝擊採樣器設計 9
2.3微粒的吸附作用與彈跳模式 11
2.4衝擊表面與微粒之彈性特性 16
2.5海綿收集介質之特性與過濾機制 18
2.6海綿介質之衝擊採樣器 21

第三章 研究方法 22
3.1衝擊式氣膠採樣器之設計與特性研究 22
3.2測試微粒的產生與量測 23
3.3材質與特性 24
3.4資料分析 25

第四章 結果與討論 26
4.1衝擊採樣器之特性探討 26
4.2微粒彈跳現象之探討 27
4.3海綿衝擊介質之特性研究 29
4.4符合呼吸性粉塵曲線之採樣器設計 32
4.5海綿衝擊介質之負載效應 33

第五章 結論與建議 35

參考文獻 36
(1984). Particles Size-Selective Sampling in the Workplace, In Annals of the American Conference of Governmental Industrial Hygienists. Cincinnati, American Conference of Governmental Industrial Hygienists: 23-100.
(1992). Workplaces Atmospheres: Size fraction definitions for measurements of airborne particles in. the workplaces. Brussels, Comite Europeen de Normalisation.
(1993). Air quality - particle size fraction definitions for health related sampling. Brussels, International Organization for Standadization.
(1995). 1994-1995 Threshold Limit Values. Cincinnati, American Conference of Governmental Industrial Hygienists.
Baron, P., and John, W. (1999). "Sampling for Thoracic Aerosols." in Particle Size-Selective Sampling for Particulate Air Contaminants, ACGIH, Cincinnati.
Bartley, D. L. and G. M. Breuer (1982). "Analysis and optimization of the performance of the 10mm cyclone." American Industrial Hygiene Association Journal 43(7): 520 - 528.
Bartley, D. L., C.-C. Chen, et al. (1994). "Respirable Aerosol Sampler Performance Testing." American Industrial Hygiene Association Journal 55(11): 1036 - 1046.
Brown, R. C. (1980). "Porous foam size selectors for respirable dust samplers." Journal of Aerosol Science 11: 151.
Chan, T. L. and M. Lippmann (1980). "Experimental measurements and empirical modelling of the regional deposition of inhaled particles in humans." American Industrial Hygiene Association Journal 41(6): 399 - 409.
Chang, M., S. Kim, et al. (1999). "Experimental Studies on Particle Impaction and Bounce: Effects of Substrate Design and Material." Atmospheric Environment 33(15): 2313-2322.
Chen, C.-C. and S.-H. Huang (1999). "Shift of Aerosol Penetration in Respirable Cyclone Samplers." American Industrial Hygiene Association Journal 60(6): 720 - 729.
Chen, C.-C., S.-H. Huang, et al. (1999). "The Virtual Cyclone as a Personal Respirable Sampler." Aerosol Science and Technology 31(6): 422 - 432.
Chen, C.-C., C.-Y. Lai, et al. (1999). "Laboratory Performance Comparison of Respirable Samplers." American Industrial Hygiene Association Journal 60(5): 601 - 611.
Chen, C.-C., C.-Y. Lai, et al. (1998). "Development of Respirable Aerosol Samplers Using Porous Foams." American Industrial Hygiene Association Journal 59(11): 766 - 773.
Cheng, Y. S. and H. C. Yeh (1979). "Particle Bounce in Cascade Impactors." Environmental Science and Technology 13(11): 1392-1396.
Chia, S. E., Y. T. Wang, et al. (1993). "Pulmonary function in healthy Chinese, Malay and Indian adults in Singapore." Ann Acad Med Singapore 22(6): 878-884.
Ching, B. and P. A. Horsfall (1977). "Lung volumes in normal Cantonese subjects: preliminary studies." Thorax 32(3): 352-355.
Corn, M. (1961). "The Adhesion of Solid Particles to Surface, II." Journal of the Air Pollution Control Association 11: 566 - 584.
da Costa, J. L. (1971). "Pulmonary function studies in healthy Chinese adults in Singapore." Am Rev Respir Dis 104(1): 128-131.
Dahneke, B. (1971). "The capture of aerosol particles by surfaces." Journal of Colloid and Interface Science 37(2): 342-353.
Demokritou, P., S. J. Lee, et al. (2004). "A compact multistage (cascade) impactor for the characterization of atmospheric aerosols." Journal of Aerosol Science 35(3): 281-299.
Gibson, H. (1981). "The Penetration of Dust Through Porous Foam Filter Media." Annals of Occupational Hygiene 24(2): 205.
Hinds, W. C. (1999). Aerosol technology—properties, behavior, and measurement of airborne particles. New York, John Wiley and Sons, Inc.
Huang, C.-H., C.-S. Chang, et al. (2005). "Use of porous foam as the substrate of an impactor for respirable aerosol sampling." Journal of Aerosol Science 36(11): 1373-1386.
Kavouras, I. G. and P. Koutrakis (2001). "Use of Polyurethane Foam as the Impaction Substrate/Collection Medium in Conventional Inertial Impactors." Aerosol Science and Technology 34: 46-56.
Kenny, L. C., R. J. Aitken, et al. (2001). "Investigation and application of a model for porous foam aerosol penetration." Journal of Aerosol Science 32(2): 271-285.
Kenny, L. C. and D. L. Bartley (1995). "Performance evaluation of aerosol samplers tested with monodisperse aerosols." Journal of Aerosol Science 26(1): 109.
Kenny, L. C. and R. A. Gussman (1997). "Characterization and modelling of a family of cyclone aerosol preseparators." Journal of Aerosol Science 28(4): 677-688.
Krupp, H. (1967). "Particle adhesion theory and experiment." Advances in Colloid and Interface Science 1(2): 111-239.
Lu, Z., W. Zhu, et al. (1998). "Investigation into Tensile Mechanical Properties of PUR Foam Plastics." ACTA MECHINICA SINICA.
Maynard, A. D. (1999). "Measurement of aerosol penetration through six personal thoracic samplers under calm air conditions." Journal of Aerosol Science 30(9): 1227-1242.
Rubow, K. L., V. A. Marple, et al. (1987). "A personal cascade impactor: design, evaluation and calibration." Am Ind Hyg Assoc J 48(6): 532-538.
Seltzer, C. C., A. B. Siegelaub, et al. (1974). "Differences in pulmonary function related to smoking habits and race." Am Rev Respir Dis 110(5): 598-608.
Seltzer, D. F., W. J. Bernaski, et al. (1971). "Evaluation of Size-Selective Presamplers II. Efficiency of the 10-mm Nylon Cyclone." American Industrial Hygiene Association Journal 32(7): 441 - 446.
Soderholm, S. C. (1989). "Proposed International Conventions for Particle Size-Selective Sampling." Ann Occup Hyg 33(3): 301-320.
Tsai, C.-J., C.-S. Chang, et al. (2008). "Laboratory and Field Tests of a Novel Three-Stage Personal Dust Sampler for Sampling Three Dust Fractions Simultaneously." Aerosol Science and Technology 42(1): 86 - 95.
Tsai, C.-J., D. Y. H. Pui, et al. (1990). "Capture and Rebound of Small Particles Upon Impact with Solid Surfaces." Aerosol Science and Technology 12(3): 497-507.
Tsai, C.-J. and T.-S. Shih (1995). "Particle Collection Efficiency of Two Personal Respirable Dust Samplers." American Industrial Hygiene Association Journal 56(9): 911 - 918.
Vincent, J. H. (1981). "On the Quantitative Definition of the Inhalability of Airborne Dust." Annals of Occupational Hygiene 24(2): 245.
Vincent, J. H., R. J. Aitken, et al. (1993). "Porous plastic foam filtration media: penetration characteristics and applications in particle size-selective sampling." Journal of Aerosol Science 24(7): 929-944.
Wake, D. (1991). "Filtration of monodisperse aerosols and polydisperse dusts by porous foam filters." Journal of Aerosol Science 22(6): 693.
Wang, H.-C. and W. John (1987). "Comparative Bounce Properties of Particle Materials." Aerosol Science and Technology 7(3): 285-299.
Willeke, K. and K. T. Whitby (1975). "Atmospheric Aerosols: Size Distribution Interpretation." Journal of the Air Pollution Control Association 25(5): 529-534.
Wu, M. C. (1981). "Study on maximal expiratory flow and volume in Chinese. I. Normal nonsmoking adults." Taiwan Yi Xue Hui Za Zhi 80(1): 19-29.
Xu, M., K. Willeke, et al. (1993). "Impaction and Rebound of Particles at Acute Incident Angles." Aerosol Science and Technology 18(2): 143 - 155.
張光男 (2004). 可控制粒徑分佈之氣懸微粒產生器與粒徑分佈對微粒負載特性的影響. 職業醫學與工業衛生研究所. 台北, 國立台灣大學. 碩士: 72.
賴全裕 (1995). 氣懸微粒分徑採樣器的研發--以海綿為分徑材質. 職業醫學與工業衛生研究所. 台北, 國立台灣大學. 碩士: 91
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔