(3.237.97.64) 您好!臺灣時間:2021/03/03 01:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:卓融駿
研究生(外文):Jung-Chun Cho
論文名稱:微粒防護衣材質測試方法比較
論文名稱(外文):Comparison of test methods for determining aerosol penetration through particulate protective clothing materials
指導教授:陳志傑陳志傑引用關係
指導教授(外文):Chih-Chieh, Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:57
中文關鍵詞:微粒穿透率微粒防護衣車縫邊螢光內循環系統
外文關鍵詞:aerosol penetrationprotective clothingseamuranine aerosolclosed-return sampling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:260
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
個人防護衣是用來保護工作人員避免有害物質經由皮膚暴露。截至目前為止雖然有許多方法來可用來測試防護衣的防護性能,然而皆著重於針對液體噴濺以及蒸氣危害的測試,對於空氣中粒狀污染物的防護性能卻尚無一套成熟並廣為使用的測試規範。在不同的工作環境中,正確選擇防護衣可以帶來最適當的防護效果,過當及不足的防護皆會造成危害,應力求避免。因此,本研究最主要的目的是發展三種測試方法來評估防護衣對微粒的防護性能,三種方法依序為:(1)主動抽氣過濾法:研究在超低過濾表面風速下,微粒防護衣的的過濾狀況;(2) 內循環採樣法:利用內循環系統來進行微粒採樣,評估防護衣微粒防護性能;(3)螢光微粒測試法:以螢光微粒評估防護衣微粒防護性能。

不論是用在醫療照護者或是工業上所使用的各式各樣防護衣皆必須經過微粒過濾效率及阻抗測試。由於聚氨酯海綿具有容易清洗、可重複使用、容易控制各項物理特性等優點,如此可減低濾材之間的變異,進而有更優質的實驗數據。實驗採用定量輸出霧化器與超音波霧化噴嘴分別產生次微米級與微米級多粒徑分佈測試微粒。由於需要較高濃度的單一粒徑測試微粒,以凝結核氣膠產生器產生。微粒產生後經過氣膠電性中和器(Am-241)以中和微粒帶電,使其達到波茲曼電量平衡的狀態。微粒量測儀器則是以氣動微粒分徑器量測粒徑大於0.7微米的微粒濃度分佈;以電移動度掃描分徑器量測小於0.7微米的微粒濃度分佈。另外,以白光氣膠分徑儀量測0.1~20微米的微粒濃度分佈,用來檢驗APS的實驗數據力保正確性。

主動抽氣過濾法中,過濾風速設定範圍涵蓋0.01~20 cm/s。極低過濾風速利用大面積的濾材握持器及低抽氣流量來達成。實驗亦改變濾材的擺放方向,探討氣流與濾材表面的夾角對過濾造成的效應。內循環採樣法中,循環的流率、採樣系統配置以及環境風速是最重要的實驗參數。螢光微粒測試法利用螢光檢知器來計算不同微粒粒徑的穿透率。

由主動式採樣法的結果得知,在極低表面風速下,對較大的微粒而言重力沉降機制成為主要的過濾機制。重力沉降機制與慣性衝擊機制的轉換點能成功的以改變採樣的方向及表面風速來找出;內循環採樣法中發現環境風速對微粒穿透具有顯著影響,抽補氣流率則因為有稀釋效應的存在而影響穿透率之計算。不論是主動式採樣法或內循環採樣法,皆發現濾材在車縫邊的微粒穿透率顯著較高,顯示車縫邊將是濾材提升防護效果的關鍵;三種測試方法所測得之穿透率值分別差一個數量級,以主動式採樣法最高,螢光微粒法最低。實驗中所有的資料對微粒防護衣測試方法的擬定佔有重要的貢獻。


Personal protective clothing is designed to protect workers against hazardous substances that might come into contact with the skin. Several widely accepted test methods are available to measure barrier properties of protective clothing against liquid and/or vapor assaults, but there is no officially accepted test method for particulate protective clothing. For any given situation, equipment and clothing should be selected that provide an adequate level of protection. Overprotection as well as under-protection can be hazardous to the wearers and should be avoided. Accordingly, the main objective of this study was to develop three test methods for evaluating the aerosol penetration through particulate protective clothing materials: (1) Active sampling method: monitoring aerosol penetration through PPC under extremely low filtration velocity, (2) Closed-return sampling train method: using a closed-return to measure the PPC performance without active sampling, (3) Fluorescent aerosol method: using fluorescent aerosols to measure aerosol penetration through protective ensembles, without active sampling. The active sampling method is useful to illustrate the aerosol penetration through protective clothing, when the wears are in motion and vacuum might be created inside the clothing. Both fluorescent aerosol method and closed return sampling train method simulated wearers in static condition. Closed return sampling train method provided fast measurement results when coupled with real time aerosol size spectrometer or aerosol counter. However, fluorescent aerosol method theoretically provides the most accurate aerosol deposition rate.
In the present study, a variety of protective garments, currently used in health care industry, were tested for aerosol penetration and air resistance. Polyurethane foam filter was used as the reference filter media for their cleanability and reusability. These unique features reduce variability and lead to good quality experimental data. In order to cover a broad size range, a constant output atomizer and an ultrasonic atomizing nozzle was used to generate polydisperse sub-micrometer-sized and micrometer-sized particles, respectively. Whenever high concentration monodisperse challenge aerosols are needed, a condensation nucleation aerosol generator was used. The aerosol output was neutralized by using a 25 mCi radioactive source, Am-241, and then introduced into the mixing (test) chamber. Two different particle size spectrometers were used to measure the aerosol concentrations and size distributions upstream and downstream of the filters: a scanning mobility particle sizer (SMPS) for particles smaller than 0.7 mm, and an aerodynamic particle sizer (APS) for particles larger than 0.7 mm. The third aerosol instrument, a Welas 3000 size spectrometer, covering size range from 0.1 to 20 mm, was used to double-check the aerosol penetration measurements by APS and SMPS.
For active sampling method, filtration velocity ranging from 0.01 to 20 cm/sec was adopted to study the flow dependency. This extremely low face velocity was made possible by using a large filter hold and the lowest sampling flow feasible. The effect of filter orientation on the filter penetration was also be investigated by rotating the filter holder to be either parallel or perpendicular to the flow. The closed-return sampling train method was conducted in a wind tunnel-like chamber. The flow rate of the closed-return system, the configuration of the sampling train, and the external approaching velocity were the principal operating parameters. The fluorescent aerosol method shared the same test apparatus with the closed-return sampling train method, except that monodisperse uranine particles, instead of polydisperse potassium sodium tartrate, were used as challenge aerosols. A fluorescence meter was used to measure the aerosol penetration through protective materials.
Under extremely low face velocity, gravitational settling became the principal filtration mechanism. This was particularly true for large particles. Transition from gravitational settling to inertial impaction was best demonstrated by rotating sampling orientation and changing face velocity. Both active sampling method and closed return sampling train method showed that the aerosol penetration through clothing with seam was much higher than that of clothing without seam. The approaching velocity played an important role pushing aerosols through particulate protective clothing. However, this effect diminished as the velocity decreased or the air resistance of the clothing material increased. In general, the aerosol penetration measured by active sampling method (filtration velocity in the proximity of 0.01 cm/sec) was about 10 times higher than that of closed return sampling train method. The aerosol penetration determined by fluorescent aerosol method decreased by a factor of 100 when compared to active sampling method.


口試記錄表 I
口試委員審定書 II
致謝 III
中文摘要 IV
英文摘要 Vi
一、研究緣起與目的 1
二、文獻回顧 3
2.1 各類防護衣測試規範及標準 3
2.1.1 英國標準 3
2.1.2 美國EPA標準 4
2.1.3 美國材料試驗學會標準 5
2.1.4 美國國家防火協會標準 6
2.1.5 美國杜邦測試標準 7
2.1.6 NIOSH (Gao and Jaques, 2009) 磁性微粒採樣法 7
2.1.7 經濟部標檢局防護衣分類 8
2.2過濾機制的探討 9
2.2.1各項過濾機制 9
2.2.2單一纖維理論 10
2.2.3防護衣的過濾條件:低表面風速 10
2.2.4海綿的過濾特性 11
2.2.5過濾品質 13
2.3防護衣測試方法及結果回顧 13
2.4人體周圍流場及環境風速 15
三、 研究材料與方法 18
A.主動式抽氣法 18
B.內循環採樣法 22
C.螢光微粒測試法 23
四、實驗結果與討論 25
4.1 各濾材之壓降變化 25
4.2 防護衣動態壓降測試 25
4.3 表面風速對防護衣及海綿穿透率的影響 26
4.4 濾材的過濾品質 26
4.5 採樣方向對微粒穿透率的影響 27
4.6 車縫邊對穿透率的影響 27
4.7 實驗值與單一纖維理論的比較 27
4.8 內循環流率 (Q) 對穿透率的影響 28
4.9 噴嘴與濾材表面的距離(d)、噴嘴風速(u)的影響 28
4.10 濾材與握持器底面之距離(y)對穿透率的影響 29
4.11車縫邊對穿透率的影響 29
4.12 螢光定量儀器的選擇 29
4.13 上游採樣濾紙的選擇 30
4.14濾材與握持器底面之距離(y)對穿透率的影響 30
五、結論與建議 31
六、參考文獻 33












表 目 錄
Table 1. Physical properties of particulate protective clothing tested in this work 36

圖 目 錄
Fig. 1. The system set-up for measuring the pressure drop across the PPC at different motion situation 37
Fig. 2. The diagram of the experimental system set-up (active sampling) 38
Fig. 3. The diagram of the experiment system set-up (closed-return) 39
Fig. 4. The design chart of the holder in method B & C 40
Fig. 5. The diagram of the experiment set-up (fluorescent method) 41
Fig. 6. The pressure drop across foam filter and PPC as a function of face velocity 42
Fig. 7. Effect of motion frequency on the pressure change of different PPC at
armpit. 43
Fig. 8. Effect of face-velocity on aerosol penetration. 44
Fig. 9. Effect of face-velocity on filter quality 45
Fig. 10. Effect of sampling orientation on aerosol penetration 46
Fig. 11. Effect of seam on aerosol penetrate thru PPC (active sampling) 47
Fig. 12. The theoretical and experimental penetration value of foam 48
Fig. 13. Effect of flow rate of the closed-return system (Q) on aerosol penetration 49
Fig. 14. Effect of distance from nozzle to filter (d) on aerosol penetration 50
Fig. 15. Effect of wind speed (u) on aerosol penetration 51
Fig. 16. Effect of distance from filter to the bottom of holder (y) on aerosol penetration 52
Fig. 17. Effect of seam on aerosol penetrate thru PPC (closed-return) 53
Fig. 18. Calibration curves of UV-Visible Recording Spectrophotometer & fluorescent detector FP-2020 54
Fig. 19. Extraction efficiency of glass fiber filter and Teflon filter 55
Fig. 20. Effect of distance from filter to the bottom of holder (y) on aerosol penetration 56
Fig. 21. The design chart of the holder in method A. 57


ACGIH (2004). Industrial Ventilation. 25th Edition. 1-10.
ASTM (2006). F 2053-00:Standard Guide for Documenting the Results of Airborne Particle Testing of Protective Clothing Materials.
Baldwin, P. and Maynard, A. (1998). A survey of wind speeds in indoor workplaces. Annals of Occupational Hygiene 42:303.
British Standard (1998). BS EN 136:Respiratory protective devices. Full face masks. Requirements, testing, marking.
British Standard (2004a). BS EN ISO 13982-1:Protective clothing for use against solid particulates. Performance requirements for chemical protective clothing providing protection to the full body against airborne solid particulates (type 5 clothing).
British Standard (2004b). BS EN ISO 13982-2: Protective clothing for use against solid particulates. Test method of determination of inward leakage of aerosols of fine particles into suits.
British Standard (2009). EN ISO 13982-1 AMD1:Protective clothing for use against solid particulates. Part 1. Performance requirements for chemical protective clothing providing protection to the full body against airborne solid particulates (type 5 clothing).
British Standard (2008). Nanotechnologies –Part 2: Guide to safe handling and disposal of manufactured nanomaterials, BSI,British Standard Institute.
Brown, R. C. (1984). A many-fibre model of airflow through a fibrous filter. Journal of Aerosol Science 15:583-593.
CFR (2008). Code of Federal Regulations Title 42 Part 84:Approval of Respiratory Protective Devices.
Chen, C. C. and Huang, S. H. (1998). The effects of particle charge on the performance of a filtering facepiece. American Industrial Hygiene Association Journal 59:227-233.
DuPont (2009). Hand book of Tyvek® and Tychem® Protective Clothing.
Emi, H., Kanaoka, C., Otani, Y. and Ishiguro, T. (1987). Collection mechanisms of electret filter. Particulate Science and Technology 5:161-171.
Emi, H. and Yoshioka, N. (1973). Prediction of Collection Efficiency of Aerosols by High Porosity Fibrous Filter. Journal of Chem. Engrg, of Japan 6:349-354.
Galeev, R. S. and Zaripov, S. K. (2003). Deposition of aerosol particles on a sphere: the role of gravity. Aerosol Science and Technology 37:325-329.
Gao, P. and Jaques, P. (2009). A Multi Domain Magnetic Passive Aerosol Sampler for Measuring Aerosol Particle Penetration Through Personal Protective Ensembles, NIOSH/NPPTL, Pittsburgh, PA.
Golanski, L., Guiot, A., Rouillon, F., Pocachard, J. and Tardif, F. (2009). Experimental evaluation of personal protection devices against graphite nanoaerosols: fibrous filter media, masks, protective clothing, and gloves. Human & Experimental Toxicology 28:353-359.
Green‐McKenzie, J., Gershon, R. R. M. and Karkashian, C. (2001). Infection Control Practices Among Correctional Healthcare Workers: Effect of Management Attitudes and Availability of Protective Equipment and Engineering Controls Infection Control and Hospital Epidemiology 22:555-559.
Heinemann, M. and Schäfer, H. G. (2009). Guidance for handling and use of nanomaterials at the workplace. Human & Experimental Toxicology 28:407-411.
Heist, D., Eisner, A., Mitchell, W. and Wiener, R. (2003). Airflow around a child-size manikin in a low-speed wind environment. Aerosol Science and Technology 37:303-314.
Hinds, W. C. (1999). Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, Inc. 182-208.
Huang, S., Huang, YH, Chen, CW, Chang, CP. (2007). Nanoparticles penetration through protective clothing materials, in 3rd International Symposium on Nanotechnology,Occupational and Environemental Health, Taipei, Taiwan.
Ingham, D. B. (1981). The diffusional deposition of aerosols in fibrous filters. Journal of Aerosol Science 12:357-365.
Johnson, A., Fetcher, B. and Saunders, C. (1996). Air movement around a worker in a low-speed flow field. Annals of Occupational Hygiene 40:57.
Lee, K. W. and Liu, B. Y. H. (1982). Theoretical study of aerosol filtration by fibrous filters. Aerosol Science and Technology 1:147-161.
Liu, B. Y. H. and Rubow, K. L. (1986). Air filtration by fibrous media, ASTM, 1-13.
Morawska, L., Johnson, G. R., Ristovski, Z. D., Hargreaves, M., Mengersen, K., Corbett, S., Chao, C. Y. H., Li, Y. and Katoshevski, D. (2009). Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Journal of Aerosol Science 40:256-269.
Murakami, S., Zeng, J. and Hayashi, T. (1999). CFD analysis of wind environment around a human body. Journal of Wind Engineering & Industrial Aerodynamics 83:393-408.
NFPA (2006). NFPA 1994: Standard on Protective Ensembles for First Responders to CBRN Terrorism Incidents 2007 Edition.
NFPA (2008). NFPA 1999: Standard on Protective Clothing for Emergency Medical Operations.
Nguyen, X. and Beeckmans, J. M. (1975). Single Fibre Capture Efficiencies of Aerosol Particles in Real and Model Filters in the Inertial-Interceptive Domain. J. Aerosol Sci. 6:205.
Papp, T., Schiffmann, D., Weiss, D., Castranova, V., Vallyathan, V. A. L. and Rahman, Q. (2008). Human health implications of nanomaterial exposure. Nanotoxicology 2:9-27.
Ryman-Rasmussen, J. P., Riviere, J. E. and Monteiro-Riviere, N. A. (2006). Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicological Sciences 91:159-165.
Schneider, T., Cherrie, J. W., Vermeulen, R. and Kromhout, H. (2000). Dermal exposure assessment. Ann Occup Hyg 44:493-499.
Shalev, I., Barker, R., McCord, M., Tucker, P. and Lisk, B. (2000). Protective textile particulate penetration screening. 1386:155-161.
Stull, J. O. and White, D. F. (1992). A Review Of Overall Integrity And Material Performance Tests For The Selection Of Chemical Protective Clothing. American Industrial Hygiene Association Journal 53:455 - 462.
Tolocka, M., Tseng, P. and Wiener, R. (2001). Optimization of the wash-off method for measuring aerosol concentrations. Aerosol Science and Technology 34:416-421.
Vincent, J. H., Aitken, R. J. and Mark, D. (1993). Porous plastic foam filtration media: penetration characteristics and applications in particle size-selective sampling. Journal of Aerosol Science 24:929-944.
Weeks, R. W. and McLeod, M. J. (1982). Penetration of >5-um Chrysolite Fibers through Dupont Tyvek 1422A and Kimberly-Clark CPF Fbrics. Am. Ind. Hyg. Assoc. J. 43:84-88.
Whyte, W. and Bailey, P. (1985). Reduction of microbial dispersion by clothing. Journal of parenteral science and technology: a publication of the Parenteral Drug Association 39:51.
Yeh, H. C. and Liu, B. Y. H. (1974). Aerosol filtration by fibrous filters-I: Theoretical. J. Aerosol Sci 5:191-204.
林凱義 (2003). A級防護衣檢視及氣密測試方法介紹. 勞工安全衛生簡訊.
經濟部標準檢驗局 (2004). 拋棄式醫用防護衣性能要求.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔