(3.231.229.89) 您好!臺灣時間:2019/12/15 21:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:顏稚浩
研究生(外文):Chih-Hao Yen
論文名稱:監測人體呼吸道產生微粒之系統建置
論文名稱(外文):Development of an Exhaled Breath Aerosol Monitoring System
指導教授:陳志傑陳志傑引用關係
指導教授(外文):Chih-Chieh Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:48
中文關鍵詞:呼出微粒微粒數目光學微粒計數器凝結核微粒計數器
外文關鍵詞:Exhaled breath aerosolparticle countoptical particle countercondensation particle counter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
咳嗽和打噴嚏是產生生物氣膠的常見形式,同時也是傳播呼吸道疾病的重要途徑。但是咳嗽和打噴嚏是明顯的動作,可以提醒周遭的人注意疾病傳播的危險。但是近幾年來有研究指出在平靜呼吸下也有傳播生物氣膠的可能性,因此有系統的以實驗研究從一般呼吸產生氣膠的機制和特性是本項研究的內容。

人體呼出微粒監測系統包含數個部分,包括流量計、凝結核微粒計數器或是光學微粒計數器以及提供高流量乾淨空氣的空腔是本篇研究系統的主軸。受試者被招募來接受測試,實驗時受試者被要求要帶鼻夾,只能透過嘴巴對著連接乾淨空氣的空腔的管道呼吸,管道內的設備包含流量計監測受試者即時的呼吸流量,以及凝結核微粒計數器和氣膠光學分徑器同步監測受試者呼出的微粒特性。實驗過程中受試者必須遵照先前以呼吸模擬器建置出的標準呼吸曲線進行呼吸以確保不同受試者之間的可比較性。

測試所有的氣膠量測儀器,以白光氣膠分徑器型號 2000H以及凝結核微粒計數器型號 3025的反應時間最短,白光氣膠分徑器另外擁有量測呼出微粒粒徑分佈的功能,凝結核微粒計數器可以補足白光分徑器在小粒徑微粒無法量測的缺點。量測一位健康成年男性受試者的資料,發現人體在平靜呼吸下(較低的潮氣容積和呼吸頻率)產生微粒的濃度很低,但是隨著呼吸潮氣容積的增加,呼出微粒的濃度也隨之增加,但是呼出微粒的濃度會隨著呼吸頻率的增加而下降,推測這應該和微粒的慣性衝擊而在呼吸系統內再沉降造成數目損失有關。


Coughing and sneezing, as shown in previous studies, are important ways of generating aerosols, and therefore, common route to spread respiratory diseases. Both coughing and sneezing are audible and visible to alert people nearby. In this work, the mechanisms and characteristics of aerosol emission from “silent” breathing were experimentally investigated and validated.

An Exhaled Breath Aerosol Monitoring System, composed of a pneumotachograph, a condensation particle counter (or an optical counter with sizing capability) and an aerosol-free chamber with flow rate over 200 L/min, was the backbone of the experimental system set-up. The subject(s) were asked to respire through a mouth piece and the home-made pneumotachograph connected the aerosol-free chamber. In order to monitor the aerosol concentration during inhalation and exhalation , a condensation particle counter (and/or an aerosol size spectrometer) with sampling rate at least 10 Hz was connected to the T-shape adaptor between the mouth piece and the pneumotachograph. A nose clip was used to force the respiration through mouth only. Subjects were asked to perform a variety of breathing patterns generated by a cylinder-piston type breathing simulator, in order to study the breathing pattern dependency.

Among the aerosol instrument tested, Welas 2000H and TSI CPC 3025 had the shortest response time. The Welas has the advantage of providing sizing information of the exhaled breath aerosols. Condensation particle counter needs to be used when the aerosol size is smaller than the lower detection limit of Welas. From monitoring data of exhaled breath of a voluntary male subject, we found that under sedentary condition (low tidal volume, low breathing frequency), the aerosol concentration of the exhaled breath decreased from near room air down to zero after several breaths. Therefore, the subject was hooded with humidified (RH 70%) aerosol-free air to speed up the test process. The aerosol generation rate increased with increasing tidal volume but decrease with increasing frequency. For the same tidal volume, exhaled breath aerosol concentration decreased with increasing breathing frequency, indicating that portion of the exhaled breath aerosols were deposited due to inertial impaction.


致謝 I
目錄 II
圖目錄 Ⅳ
摘要 Ⅴ
ABSTRACT Ⅵ
第一章、研究背景與目的 1
1.1 研究背景 1
1.2 研究目的 2
第二章、文獻探討 3
2.1呼吸系統構造 3
2.2呼吸系統黏液的特性 5
2.3呼吸道疾病的傳播 6
2.4呼吸產生微粒情形 8
2.5呼出微粒可能形成機制 9
第三章、研究方法 11
3.1 實驗系統 11
3.1.1標準呼吸模式建置方式 11
3.1.2呼出微粒量測系統 11
3.2、實驗儀器 12
3.3 實驗系統的受試者 14
第四章、結果與討論 15
4.1加濕器效能評估 15
4.2氣罩的使用 15
4.3 流量計水蒸氣負載問題 16
4.4 系統內空腔體積 16
4.5呼吸模式紀錄裝置 17
4.6 吹嘴的選擇 18
4.7 量測儀器的選擇 18
4.8 系統的延遲時間評估 23
4.9 人體呼出微粒的特性 23
第五章、結論與建議 25
第六章、參考文獻 27



Chao, C. Y. H., Wan, M. P., Morawska, L., Johnson, G. R., Ristovski, Z. D., Hargreaves, M., Mengersen, K., Corbett, S., Li, Y., Xie, X. and Katoshevski, D. (2009). Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. Journal of Aerosol Science 40:122-133.
Clemente, C. D. (2006). Anatomy- A Regional Atlas of the Human Body. Lippincott Williams & Wilkins, Philadelphia.p112~p115
Cole, E. C. and Cook, C. E. (1998). Characterization of infectious aerosols in health care facilities: An aid to effective engineering controls and preventive strategies. American Journal of Infection Control 26:453-464.
Desaedeleer, G. G. and Winchester, J. W. (1975). Trace metal analysis of atmospheric aerosol particle size fractions in exhaled human breath. Environmental Science & Technology 9:971-972.
Edwards, D. A. (2006). Inhaling cationic aerosols to mitigate the spread of infectious disease. AIChE Annual Meeting, Conference Proceedings
Evrensel, C. A. and Khan, M. R. (2003). Interaction of laminar airflow with viscoelastic airway mucus. Technol Health Care 11:149-159.
Evrensel, C. A., Khan, R. U., Elli, S. and Krumpe, P. E. (1993). Viscous airflow through a rigid tube with a compliant lining: a simple model for the air-mucus interaction in pulmonary airways. J Biomech Eng 115:262-270.
Fabian, P., McDevitt, J. J., DeHaan, W. H., Fung, R. O., Cowling, B. J., Chan, K. H., Leung, G. M. and Milton, D. K. (2008). Influenza virus in human exhaled breath: an observational study. PLoS ONE 3.
Fairchild, C. I. and Stampfer, J. F. (1987). Particle Concentration in Exhaled Breath. American Industrial Hygiene Association Journal 48:948 - 949.
Fiegel, J., Clarke, R. and Edwards, D. A. (2006). Airborne infectious disease and the suppression of pulmonary bioaerosols. Drug Discovery Today 11:51-57.
Gupta, J. K., Lin, C. H. and Chen, Q. (2009). Flow dynamics and characterization of a cough. Indoor Air 19:517-525.
Hassan, A. A., Evrensel, C. A. and Krumpe, P. E. (2006). Clearance of viscoelastic mucus simulant with airflow in a rectangular channel, an experimental study. Technol Health Care 14:1-11.
Hemmes, J. H., Winkler, K. C. and Kool, S. M. (1960). Virus survival as a seasonal factor in influenza and polimyelitis. Nature 188:430-431.
Hemmes, J. H., Winkler, K. C. and Kool, S. M. (1962). Virus survival as a seasonal factor in influenza and poliomylitis. Antonie Van Leeuwenhoek 28:221-233.
Johnson, G. R. and Morawska, L. (2009). The mechanism of breath aerosol formation. J Aerosol Med Pulm Drug Deliv 22:229-237.
Kim, C. S., Greene, M. A., Sankaran, S. and Sackner, M. A. (1986). Mucus transport in the airways by two-phase gas-liquid flow mechanism: continuous flow model. J Appl Physiol 60:908-917.
Kim, C. S., Iglesias, A. J. and Sackner, M. A. (1987). Mucus clearance by two-phase gas-liquid flow mechanism: asymmetric periodic flow model. J Appl Physiol 62:959-971.
King, M., Brock, G. and Lundell, C. (1985). Clearance of mucus by simulated cough. J Appl Physiol 58:1776-1782.
Lopez-Vidriero, M. T. (1986). RESPIRATORY MUCUS. The Lancet 328:339-339.
Lowen, A. C., Mubareka, S., Steel, J. and Palese, P. (2007). Influenza Virus Transmission Is Dependent on Relative Humidity and Temperature. PLoS Pathog 3:e151.
Malashenko, A., Tsuda, A. and Haber, S. (2009). Propagation and Breakup of Liquid Menisci and Aerosol Generation in Small Airways. J Aerosol Med Pulm Drug Deliv.
Marriott, C. (1990). Mucus and mucociliary clearance in the respiratory tract. Advanced Drug Delivery Reviews 5:19-35.
Miller, W. S. and Artenstein, M. S. (1967). Aerosol stability of three acute respiratory disease viruses. Proc Soc Exp Biol Med 125:222-227.
Morawska, L., Johnson, G. R., Ristovski, Z. D., Hargreaves, M., Mengersen, K., Corbett, S., Chao, C. Y. H., Li, Y. and Katoshevski, D. (2009). Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Journal of Aerosol Science 40:256-269.
MORIARTY, J. A. and GROTBERG, J. B. (1999). Flow-induced instabilities of a mucus-serous bilayer. Journal of Fluid Mechanics 397:1-22.
Mutlu, G. M., Garey, K. W., Robbins, R. A., Danziger, L. H. and Rubinstein, I. (2001). Collection and analysis of exhaled breath condensate in humans. Am J Respir Crit Care Med 164:731-737.
Nicas, M., Nazaroff, W. W. and Hubbard, A. (2005). Toward Understanding the Risk of Secondary Airborne Infection: Emission of Respirable Pathogens. Journal of Occupational and Environmental Hygiene 2:143 - 154.
Papineni, R. S. and Rosenthal, F. S. (1997). The size distribution of droplets in the exhaled breath of healthy human subjects. J Aerosol Med 10:105-116.
Schaffer, F. L., Soergel, M. E. and Straube, D. C. (1976). Survival of airborne influenza virus: effects of propagating host, relative humidity, and composition of spray fluids. Arch Virol 51:263-273.
Schwarz, K., Biller, H., Windt, H., Koch, W. and Hohlfeld, J. M. (2010). Characterization of Exhaled Particles from the Healthy Human Lung-A Systematic Analysis in Relation to Pulmonary Function Variables. J Aerosol Med Pulm Drug Deliv.
Sherwood, L. (2006). Human Physiology- from cells to systems:p450~p496.
Tellier, R. (2009). Aerosol transmission of influenza A virus: a review of new studies. Journal of The Royal Society Interface 6:S783-S790.
Weibel, E. R. and Gomez, D. M. (1962). Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science 137:577-585.
WHO (2003). Summary of probable SARS cases with onset of illness from 1 November 2002 to 31 July 2003.
Xie, X., Li, Y., Chwang, A. T. Y., Ho, P. L. and Seto, W. H. (2007). How far droplets can move in indoor environments - revisiting the Wells evaporation-falling curve. Indoor Air 17:211-225.
Yang, S., Lee, G. W., Chen, C. M., Wu, C. C. and Yu, K. P. (2007). The size and concentration of droplets generated by coughing in human subjects. J Aerosol Med 20:484-494
Zhu, S., Kato, S. and Yang, J.-H. (2006). Study on transport characteristics of saliv droplets produced by coughing in a calm indoor environment. Building and Environment 41:1691-1702.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔